English

Find the joint equation of the line: x + y - 3 = 0 and 2x + y - 1 = 0 - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the joint equation of the line:

x + y - 3 = 0 and 2x + y - 1 = 0

Sum

Solution

Find the joint equation of the line x + y - 3 = 0 and 2x + y - 1 = 0

(x + y - 3)(2x + y - 1) = 0

∴ 2x2 + xy - x + 2xy + y2 - y - 6x - 3y + 3 = 0

∴ 2x2 + 3xy + y2 - 7x - 4y + 3 = 0

shaalaa.com
Combined Equation of a Pair Lines
  Is there an error in this question or solution?
Chapter 4: Pair of Straight Lines - Miscellaneous Exercise 4 [Page 130]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 4 Pair of Straight Lines
Miscellaneous Exercise 4 | Q 1.02 | Page 130

RELATED QUESTIONS

Find the combined equation of the following pair of line:

x + 2y - 1 = 0 and x - 3y + 2 = 0


Find the combined equation of the following pair of lines:

Passing through (2, 3) and perpendicular to the lines 3x + 2y – 1 = 0 and x – 3y + 2 = 0.


Find the combined equation of the following pair of line passing through (−1, 2), one is parallel to x + 3y − 1 = 0 and other is perpendicular to 2x − 3y − 1 = 0


Find the separate equation of the line represented by the following equation:

5x2 – 9y2 = 0


Find the separate equation of the line represented by the following equation:

x2 - 4xy = 0 


Find the separate equation of the line represented by the following equation:

`3"x"^2 - 2sqrt3"xy" - 3"y"^2 = 0`


Find the separate equation of the line represented by the following equation:

x2 + 2(cosec α)xy + y2 = 0


Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:

xy + y2 = 0 


Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:

3x2 -  4xy = 0 


The area of triangle formed by the lines x2 + 4xy + y2 = 0 and x - y - 4 = 0 is ______.


Choose correct alternatives:

The combined equation of the coordinate axes is


Find the joint equation of the line:

x - y = 0 and x + y = 0


Find the joint equation of the line passing through (1, 2) and parallel to the coordinate axes


Find the joint equation of the line which are at a distance of 9 units from the Y-axis.


Find the joint equation of the line passing through the point (3, 2), one of which is parallel to the line x - 2y = 2, and other is perpendicular to the line y = 3.


Find the joint equation of the line passing through the origin and perpendicular to the lines x + 2y = 19 and 3x + y = 18


Show that the following equations represents a pair of line:

x2 + 2xy - y2 = 0


Show that the following equations represent a pair of line:

x2 - y2 = 0


Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by

x2 + 4xy - 5y2 = 0


Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by

2x2 - 3xy - 9y2 = 0


Find k, if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.


Find the combined equation of bisectors of angles between the lines represented by 5x2 + 6xy - y2 = 0.


Show that the following equation represents a pair of line. Find the acute angle between them:

2x2 + xy - y2 + x + 4y - 3 = 0


Show that the following equation represents a pair of line. Find the acute angle between them:

(x - 3)2 + (x - 3)(y - 4) - 2(y - 4)2 = 0


If the lines given by ax2 + 2hxy + by2 = 0 form an equilateral triangle with the line lx + my = 1, show that (3a + b)(a + 3b) = 4h2.


If the line x + 2 = 0 coincides with one of the lines represented by the equation x2 + 2xy + 4y + k = 0, then prove that k = - 4. 


Prove that the combined of the pair of lines passing through the origin and perpendicular to the lines ax2 + 2hxy + by2 = 0 is bx2 - 2hxy + ay2 = 0.


Find the joint equation of the line passing through the origin and having slopes 1 + `sqrt3` and 1 - `sqrt3`


The combined equation of the lines through origin and perpendicular to the pair of lines 3x2 + 4xy − 5y2 = 0 is ______


The joint equation of pair of lines having slopes 2 and 5 and passing through the origin is ______.


The combined equation of the lines which pass through the origin and each of which makes an angle of 30° with the line 3x + 2y – 11 = 0 is ______.


The line 5x + y – 1 = 0 coincides with one of the lines given by 5x2 + xy – kx – 2y + 2 = 0 then the value of k is ______.


Find the combined equation of the pair of lines passing through the origin and perpendicular to the lines represented by 3x2 + 2xy – y2 = 0.


If `x^2/a + y^2/b + (2xy)/h` = 0 represents a pair of lines and slope of one line is twice the other, then find the value of ab : h2.


Find k, if one of the lines given by kx2 – 5xy – 3y2 = 0 is perpendicular to the line x – 2y + 3 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×