Advertisements
Advertisements
Question
Show that the combined equation of the pair of lines passing through the origin and each making an angle α with the line x + y = 0 is x2 + 2(sec 2α)xy + y2 = 0
Solution
Let OA and OB be the required lines.
Let OA (or OB) has slope m.
∴ its equation is y = mx ...(1)
It makes an angle α with x + y = 0 whose slope is - 1.
∴ tan α = `|("m" + 1)/(1 + "m"(- 1))|`
Squaring both sides, we get,
`"tan"^2alpha = ("m" + 1)^2/(1 - "m")^2`
∴ tan2α (1 - 2m + m2) = m2 + 2m + 1
∴ tan2α - 2mtan2α + m2tan2α = m2 + 2m + 1
∴ (tan2α - 1)m2 - 2(1 + tan2α)m + (tan2α - 1) = 0
∴ `"m"^2 - 2((1 + "tan"^2alpha)/("tan"^2alpha - 1))"m" + 1 = 0`
∴ `"m"^2 + 2((1 + "tan"^2alpha)/(1 - "tan"^2alpha)) "m" + 1 = 0`
∴ `"m"^2 + 2(sec 2 alpha)"m" + 1 = 0` ...`[because "cos 2"alpha = (1 - "tan"^2 alpha)/(1 + "tan"^2alpha)]`
∴ `"y"^2/"x"^2 + 2("sec"2alpha)"y"/"x" + 1 = 0`
∴ `"y"^2 2"xy" "sec" 2 alpha + "x"^2 = 0` ...[By (1)]
∴ `"y"^2 + 2"xy" "sec 2" alpha + "x"^2 = 0`
∴ x2 + 2(sec 2α)xy + y2 = 0 is the required equation.
APPEARS IN
RELATED QUESTIONS
Find the combined equation of the following pair of line:
x + 2y - 1 = 0 and x - 3y + 2 = 0
Find the combined equation of the following pair of lines passing through point (2, 3) and parallel to the coordinate axes.
Find the combined equation of the following pair of line passing through (−1, 2), one is parallel to x + 3y − 1 = 0 and other is perpendicular to 2x − 3y − 1 = 0
Find the separate equation of the line represented by the following equation:
`3"x"^2 - 2sqrt3"xy" - 3"y"^2 = 0`
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by following equation:
5x2 - 8xy + 3y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
xy + y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
3x2 - 4xy = 0
Choose correct alternatives:
If two lines ax2 + 2hxy + by2 = 0 make angles α and β with X-axis, then tan (α + β) = _____.
Choose correct alternatives:
The joint equation of the lines through the origin and perpendicular to the pair of lines 3x2 + 4xy – 5y2 = 0 is _______.
Choose correct alternatives:
If h2 = ab, then slopes of lines ax2 + 2hxy + by2 = 0 are in the ratio
Choose correct alternatives:
If slope of one of the lines ax2 + 2hxy + by2 = 0 is 5 times the slope of the other, then 5h2 = ______
Find the joint equation of the line:
x - y = 0 and x + y = 0
Find the joint equation of the line:
x + y - 3 = 0 and 2x + y - 1 = 0
Find the joint equation of the line passing through the origin having slopes 2 and 3.
Find the joint equation of the line passing through the origin and having inclinations 60° and 120°.
Find the joint equation of the line passing through (1, 2) and parallel to the coordinate axes
Find the joint equation of the line which are at a distance of 9 units from the Y-axis.
Find the joint equation of the line passing through the point (3, 2), one of which is parallel to the line x - 2y = 2, and other is perpendicular to the line y = 3.
Show that the following equations represents a pair of line:
x2 + 2xy - y2 = 0
Show that the following equations represent a pair of line:
x2 - y2 = 0
Show that the following equations represent a pair of line:
x2 + 7xy - 2y2 = 0
Find the separate equation of the line represented by the following equation:
x2 - 4y2 = 0
Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by
x2 + 4xy - 5y2 = 0
Find k, if the sum of the slopes of the lines given by 3x2 + kxy - y2 = 0 is zero.
Find k, if the slope of one of the lines given by 3x2 - 4xy + ky2 = 0 is 1.
Find k, if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.
Find k, if one of the lines given by 6x2 + kxy + y2 = 0 is 2x + y = 0.
If the line x + 2 = 0 coincides with one of the lines represented by the equation x2 + 2xy + 4y + k = 0, then prove that k = - 4.
Prove that the combined of the pair of lines passing through the origin and perpendicular to the lines ax2 + 2hxy + by2 = 0 is bx2 - 2hxy + ay2 = 0.
If equation ax2 - y2 + 2y + c = 1 represents a pair of perpendicular lines, then find a and c.
The combined equation of the two lines passing through the origin, each making angle 45° and 135° with the positive X-axis is ______
The joint equation of pair of straight lines passing through origin and having slopes `(1 + sqrt2) and (1/(1 + sqrt2))` is ______.
The joint equation of pair of lines through the origin, each of which makes an angle of 60° with Y-axis, is ______
The equation of line passing through the midpoint of the line joining the points (-1, 3, -2) and (-5, 3, -6) and equally inclined to the axes is ______.
If `x^2/a + y^2/b + (2xy)/h` = 0 represents a pair of lines and slope of one line is twice the other, then find the value of ab : h2.
Combined equation of the lines bisecting the angles between the coordinate axes, is ______.
Find k, if one of the lines given by kx2 – 5xy – 3y2 = 0 is perpendicular to the line x – 2y + 3 = 0