मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the separate equation of the line represented by the following equation: x2 + 2(cosec α)xy + y2 = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the separate equation of the line represented by the following equation:

x2 + 2(cosec α)xy + y2 = 0

बेरीज

उत्तर

x2 + 2(cosec α)xy + y2 = 0

i.e. y2 + 2(cosec α)xy + x2 = 0

Dividing by x2, we get,

`("y"/"x")^2 + 2"cosec"alpha. ("y"/"x") + 1 = 0`

`therefore "y"/"x" = (-2 "cosec" alpha  +- sqrt(4"cosec"^2 alpha - 4 xx 1 xx 1))/(2xx1)`

`= (-2 "cosec" alpha  +- 2sqrt("cosec"^2 alpha - 1))/2`

= - cosec α ± cot α

`therefore "y"/"x" = ("cot" alpha - "cosec" alpha)` and

`"y"/"x" = - ("cosec" alpha + "cot" alpha)`

The separate equations of the lines are

(cosec α - cot α) x + y = 0 and (cosec α + cot α) x + y = 0 

shaalaa.com

Notes

Answer in the textbook is incorrect.

Combined Equation of a Pair Lines
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Pair of Straight Lines - Exercise 4.1 [पृष्ठ ११९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Pair of Straight Lines
Exercise 4.1 | Q 2.6 | पृष्ठ ११९

संबंधित प्रश्‍न

Find the combined equation of the following pair of line:

x + 2y - 1 = 0 and x - 3y + 2 = 0


Find the combined equation of the following pair of lines:

Passing through (2, 3) and perpendicular to the lines 3x + 2y – 1 = 0 and x – 3y + 2 = 0.


Find the combined equation of the following pair of line passing through (−1, 2), one is parallel to x + 3y − 1 = 0 and other is perpendicular to 2x − 3y − 1 = 0


Find the separate equation of the line represented by the following equation:

5x2 – 9y2 = 0


Find the separate equation of the line represented by the following equation:

x2 + 2xy tan α - y2 = 0


Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:

5x2 + 2xy - 3y2 = 0 


Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:

3x2 -  4xy = 0 


Choose correct alternatives:

Auxiliary equation of 2x2 + 3xy - 9y2 = 0 is


If the slope of one of the two lines given by `"x"^2/"a" + "2xy"/"h" + "y"^2/"b" = 0` is twice that of the other, then ab : h2 = ______.


The area of triangle formed by the lines x2 + 4xy + y2 = 0 and x - y - 4 = 0 is ______.


Choose correct alternatives:

If h2 = ab, then slopes of lines ax2 + 2hxy + by2 = 0 are in the ratio


Choose correct alternatives:

If distance between lines (x - 2y)2 + k(x - 2y) = 0 is 3 units, then k = ______.


Find the joint equation of the line:

x + y - 3 = 0 and 2x + y - 1 = 0


Find the joint equation of the line passing through the origin having slopes 2 and 3.


Find the joint equation of the line passing through the origin and having inclinations 60° and 120°.


Find the joint equation of the line passing through the origin and perpendicular to the lines x + 2y = 19 and 3x + y = 18


Find the joint equation of the line passing through (-1, 2) and perpendicular to the lines  x + 2y + 3 = 0 and 3x - 4y - 5 = 0


Show that the following equations represents a pair of line:

x2 + 2xy - y2 = 0


Show that the following equations represents a pair of line:

4x2 + 4xy + y2 = 0


Show that the following equations represent a pair of line:

`"x"^2 - 2sqrt3"xy" - "y"^2 = 0`


Find the separate equation of the line represented by the following equation:

3x2 - y2 = 0


Find k, if the sum of the slopes of the lines given by 3x2 + kxy - y2 = 0 is zero.


Find the joint equation of the pair of lines through the origin and making an equilateral triangle with the line x = 3.


Find an if the sum of the slope of lines represented by ax2 + 8xy + 5y2 = 0 is twice their product.


If the line 4x - 5y = 0 coincides with one of the lines given by ax2 + 2hxy + by2 = 0, then show that 25a + 40h + 16b = 0


Show that the following equation represents a pair of line. Find the acute angle between them:

(x - 3)2 + (x - 3)(y - 4) - 2(y - 4)2 = 0


If the lines given by ax2 + 2hxy + by2 = 0 form an equilateral triangle with the line lx + my = 1, show that (3a + b)(a + 3b) = 4h2.


Prove that the combined of the pair of lines passing through the origin and perpendicular to the lines ax2 + 2hxy + by2 = 0 is bx2 - 2hxy + ay2 = 0.


The combined equation of the lines through origin and perpendicular to the pair of lines 3x2 + 4xy − 5y2 = 0 is ______


The joint equation of pair of straight lines passing through origin and having slopes `(1 + sqrt2) and (1/(1 + sqrt2))` is ______.


The joint equation of pair of lines through the origin, each of which makes an angle of 60° with Y-axis, is ______ 


The joint equation of pair of lines having slopes `1+sqrt2` and `1-sqrt2` and passing through the origin is ______.


The line 5x + y – 1 = 0 coincides with one of the lines given by 5x2 + xy – kx – 2y + 2 = 0 then the value of k is ______.


Find the combined equation of the pair of lines passing through the origin and perpendicular to the lines represented by 3x2 + 2xy – y2 = 0.


If `x^2/a + y^2/b + (2xy)/h` = 0 represents a pair of lines and slope of one line is twice the other, then find the value of ab : h2.


Combined equation of the lines bisecting the angles between the coordinate axes, is ______.


Find the joint equation of the pair of lines through the origin and perpendicular to the lines given by 2x2 + 7xy + 3y2 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×