Advertisements
Advertisements
प्रश्न
Find the combined equation of the following pair of line:
x + 2y - 1 = 0 and x - 3y + 2 = 0
उत्तर
The combined equation of the lines x + 2y - 1 = 0 and x - 3y + 2 = 0 is
(x + 2y - 1)(x - 3y + 2) = 0
∴ x2 - 3xy + 2x + 2xy - 6y2 + 4y - x + 3y - 2 = 0
∴ x2 - xy - 6y2 + x + 7y - 2 = 0
APPEARS IN
संबंधित प्रश्न
Find the combined equation of the following pair of lines passing through point (2, 3) and parallel to the coordinate axes.
Find the separate equation of the line represented by the following equation:
5x2 – 9y2 = 0
Find the separate equation of the line represented by the following equation:
x2 - 4xy = 0
Find the separate equation of the line represented by the following equation:
x2 + 2xy tan α - y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by following equation:
5x2 - 8xy + 3y2 = 0
If the slope of one of the two lines given by `"x"^2/"a" + "2xy"/"h" + "y"^2/"b" = 0` is twice that of the other, then ab : h2 = ______.
Choose correct alternatives:
If slope of one of the lines ax2 + 2hxy + by2 = 0 is 5 times the slope of the other, then 5h2 = ______
Find the joint equation of the line:
x - y = 0 and x + y = 0
Find the joint equation of the line passing through (1, 2) and parallel to the coordinate axes
Find the joint equation of the line passing through the origin and perpendicular to the lines x + 2y = 19 and 3x + y = 18
Find the joint equation of the line passing through (-1, 2) and perpendicular to the lines x + 2y + 3 = 0 and 3x - 4y - 5 = 0
Find the separate equation of the line represented by the following equation:
x2 - 4y2 = 0
Find the separate equation of the line represented by the following equation:
3x2 - y2 = 0
Find the separate equation of the line represented by the following equation:
2x2 + 2xy - y2 = 0
Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by
x2 + xy - y2 = 0
Find k, if the sum of the slopes of the lines given by 3x2 + kxy - y2 = 0 is zero.
Find k, if one of the lines given by 3x2 - kxy + 5y2 = 0 is perpendicular to the line 5x + 3y = 0.
Find the combined equation of bisectors of angles between the lines represented by 5x2 + 6xy - y2 = 0.
If the line 4x - 5y = 0 coincides with one of the lines given by ax2 + 2hxy + by2 = 0, then show that 25a + 40h + 16b = 0
Show that the following equation represents a pair of line. Find the acute angle between them:
(x - 3)2 + (x - 3)(y - 4) - 2(y - 4)2 = 0
Find the condition that the equation ay2 + bxy + ex + dy = 0 may represent a pair of lines.
If the lines given by ax2 + 2hxy + by2 = 0 form an equilateral triangle with the line lx + my = 1, show that (3a + b)(a + 3b) = 4h2.
If the line x + 2 = 0 coincides with one of the lines represented by the equation x2 + 2xy + 4y + k = 0, then prove that k = - 4.
The combined equation of the lines through origin and perpendicular to the pair of lines 3x2 + 4xy − 5y2 = 0 is ______
Show that the combined equation of pair of lines passing through the origin is a homogeneous equation of degree 2 in x and y. Hence find the combined equation of the lines 2x + 3y = 0 and x − 2y = 0
The joint equation of pair of straight lines passing through origin and having slopes `(1 + sqrt2) and (1/(1 + sqrt2))` is ______.
The joint equation of the lines through the origin which forms two of the sides of the equilateral triangle having x = 2 as the third side is ______
The equation of line passing through the midpoint of the line joining the points (-1, 3, -2) and (-5, 3, -6) and equally inclined to the axes is ______.
The combined equation of the lines which pass through the origin and each of which makes an angle of 30° with the line 3x + 2y – 11 = 0 is ______.
Find the combined equation of the pair of lines passing through the origin and perpendicular to the lines represented by 3x2 + 2xy – y2 = 0.
Find the joint equation of the pair of lines through the origin and perpendicular to the lines given by 2x2 + 7xy + 3y2 = 0
Find k, if one of the lines given by kx2 – 5xy – 3y2 = 0 is perpendicular to the line x – 2y + 3 = 0