Advertisements
Advertisements
प्रश्न
Find the separate equation of the line represented by the following equation:
x2 + 2xy tan α - y2 = 0
उत्तर
The given combined equation is x2 + 2xy tan α - y2 = 0
`x^2/x^2 + (2xy) /x^2 . tan alpha - y^2/x^2`
`1 + (2y)/x . tan alpha - (y/x)^2 = 0`
`(y/x)^2 - (2y)/x . tan alpha - 1 = 0`
put `m = y/x`
`m^2 - 2m tan alpha - 1 = 0`
`m = (- (-2 tan alpha) +- sqrt((-2 tan alpha)^2 - 4 xx 1 xx -1))/(2xx1)`
`m = (2 tan alpha +- sqrt(4 tan^2 alpha + 4))/2`
`m = (2 tan alpha +- sqrt(4 (tan^2 alpha + 1)))/2`
`m = (2 tan alpha +- sqrt(4sec^2alpha))/2`
`m = (2tan alpha +- 2secalpha) /2`
`m = (2(tan alpha +- secalpha))/2`
`m = tanalpha +- sec alpha`
Take (+)
`y/x = (tan alpha + sec alpha)`
`y = (tan alpha + sec alpha)x`
`(tan alpha + sec alpha) x - y = 0` ...(i)
Take (-)
`(tan alpha - sec alpha)x + y = 0` ...(ii)
APPEARS IN
संबंधित प्रश्न
Find the combined equation of the following pair of line:
2x + y = 0 and 3x − y = 0
Find the combined equation of the following pair of line:
x + 2y - 1 = 0 and x - 3y + 2 = 0
Find the combined equation of the following pair of lines:
Passing through (2, 3) and perpendicular to the lines 3x + 2y – 1 = 0 and x – 3y + 2 = 0.
Find the combined equation of the following pair of line passing through (−1, 2), one is parallel to x + 3y − 1 = 0 and other is perpendicular to 2x − 3y − 1 = 0
Find the separate equation of the line represented by the following equation:
3y2 + 7xy = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by following equation:
5x2 - 8xy + 3y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
xy + y2 = 0
If the slope of one of the two lines given by `"x"^2/"a" + "2xy"/"h" + "y"^2/"b" = 0` is twice that of the other, then ab : h2 = ______.
The area of triangle formed by the lines x2 + 4xy + y2 = 0 and x - y - 4 = 0 is ______.
Choose correct alternatives:
The combined equation of the coordinate axes is
Choose correct alternatives:
If distance between lines (x - 2y)2 + k(x - 2y) = 0 is 3 units, then k = ______.
Find the joint equation of the line:
x - y = 0 and x + y = 0
Find the joint equation of the line passing through the origin having slopes 2 and 3.
Find the joint equation of the line passing through (1, 2) and parallel to the coordinate axes
Find the joint equation of the line passing through the origin and perpendicular to the lines x + 2y = 19 and 3x + y = 18
Show that the following equations represents a pair of line:
4x2 + 4xy + y2 = 0
Find the separate equation of the line represented by the following equation:
6x2 - 5xy - 6y2 = 0
Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by
2x2 - 3xy - 9y2 = 0
Find k, if the sum of the slopes of the lines given by x2 + kxy − 3y2 = 0 is equal to their product.
Find k, if the slope of one of the lines given by 3x2 - 4xy + ky2 = 0 is 1.
Find k, if one of the lines given by 6x2 + kxy + y2 = 0 is 2x + y = 0.
Find the joint equation of the pair of lines through the origin and making an equilateral triangle with the line x = 3.
Find the combined equation of bisectors of angles between the lines represented by 5x2 + 6xy - y2 = 0.
Find an if the sum of the slope of lines represented by ax2 + 8xy + 5y2 = 0 is twice their product.
If the lines given by ax2 + 2hxy + by2 = 0 form an equilateral triangle with the line lx + my = 1, show that (3a + b)(a + 3b) = 4h2.
If equation ax2 - y2 + 2y + c = 1 represents a pair of perpendicular lines, then find a and c.
The combined equation of the two lines passing through the origin, each making angle 45° and 135° with the positive X-axis is ______
The combined equation of the lines through origin and perpendicular to the pair of lines 3x2 + 4xy − 5y2 = 0 is ______
Show that the combined equation of pair of lines passing through the origin is a homogeneous equation of degree 2 in x and y. Hence find the combined equation of the lines 2x + 3y = 0 and x − 2y = 0
The equation of line passing through the midpoint of the line joining the points (-1, 3, -2) and (-5, 3, -6) and equally inclined to the axes is ______.
The joint equation of pair of lines having slopes 2 and 5 and passing through the origin is ______.
The combined equation of the lines which pass through the origin and each of which makes an angle of 30° with the line 3x + 2y – 11 = 0 is ______.
The line 5x + y – 1 = 0 coincides with one of the lines given by 5x2 + xy – kx – 2y + 2 = 0 then the value of k is ______.
Write the joint equation of co-ordinate axes.
Find the combined equation of y-axis and the line through the origin having slope 3.