मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by 2x2 - 3xy - 9y2 = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by

2x2 - 3xy - 9y2 = 0

बेरीज

उत्तर

Comparing the equation 2x2 - 3xy - 9y2 = 0 with ax2 + 2hxy + by2 = 0, we get,

a = 2, 2h = - 3, b = - 9

Let m1 and m2 be the slopes of the lines represented by 2x2 - 3xy - 9y2 = 0 

∴ m1 + m2 = `(-"2h")/"b" = -3/9`  and  m1m2 = `"a"/"b" = -2/9`    ...(1)

Now, required lines are perpendicular to these lines

∴ their slopes are `(-1)/"m"_1` and `- 1/"m"_2`

Since these lines are passing through the origin, their separate equations are

y = `(-1)/"m"_1 "x"` and y = `(-1)/"m"_2 "x"`

i.e. m1y = - x and m2y = - x

i.e. x + m1y  = 0 and x + m2y = 0

∴ their combined equation is

(x + m1y)(x + m2y) = 0

∴ x2 + (m1 + m2)xy + m1m2y2 = 0

∴ `"x"^2 + (-3/9) "xy" + (-2/9)"y"^2 = 0`   ....[By(1)]

∴ `9"x"^2 - 3"xy" - 2"y"^2 = 0`

shaalaa.com
Combined Equation of a Pair Lines
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Pair of Straight Lines - Miscellaneous Exercise 4 [पृष्ठ १३१]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Pair of Straight Lines
Miscellaneous Exercise 4 | Q 4.2 | पृष्ठ १३१

संबंधित प्रश्‍न

Find the separate equation of the line represented by the following equation:

3y2 + 7xy = 0 


Find the separate equation of the line represented by the following equation:

5x2 – 9y2 = 0


Find the separate equation of the line represented by the following equation:

x2 - 4xy = 0 


Find the separate equation of the line represented by the following equation:

`3"x"^2 - 2sqrt3"xy" - 3"y"^2 = 0`


Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by following equation:

5x2 - 8xy + 3y2 = 0 


Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:

xy + y2 = 0 


Choose correct alternatives:

If two lines ax2 + 2hxy + by2 = 0 make angles α and β with X-axis, then tan (α + β) = _____.


Choose correct alternatives:

The joint equation of the lines through the origin and perpendicular to the pair of lines 3x2 + 4xy – 5y2 = 0 is _______.


The area of triangle formed by the lines x2 + 4xy + y2 = 0 and x - y - 4 = 0 is ______.


Choose correct alternatives:

The combined equation of the coordinate axes is


Choose correct alternatives:

If h2 = ab, then slopes of lines ax2 + 2hxy + by2 = 0 are in the ratio


Choose correct alternatives:

If slope of one of the lines ax2 + 2hxy + by2 = 0 is 5 times the slope of the other, then 5h2 = ______


Find the joint equation of the line:

x - y = 0 and x + y = 0


Find the joint equation of the line passing through the origin having slopes 2 and 3.


Find the joint equation of the line passing through (1, 2) and parallel to the coordinate axes


Find the joint equation of the line passing through (3, 2) and parallel to the lines x = 2 and y  = 3.


Find the joint equation of the line passing through the origin and perpendicular to the lines x + 2y = 19 and 3x + y = 18


Show that the following equations represent a pair of line:

x2 + 7xy - 2y2 = 0


Find the separate equation of the line represented by the following equation:

6x2 - 5xy - 6y2 = 0


Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by

x2 + xy - y2 = 0


Find k, if the sum of the slopes of the lines given by 3x2 + kxy - y2 = 0 is zero.


Find k, if the sum of the slopes of the lines given by x2 + kxy − 3y2 = 0 is equal to their product.


Find k, if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.


Find k, if one of the lines given by 6x2 + kxy + y2 = 0 is 2x + y = 0.


Find the joint equation of the pair of lines through the origin and making an equilateral triangle with the line x = 3.


Find an if the sum of the slope of lines represented by ax2 + 8xy + 5y2 = 0 is twice their product.


Show that the following equation represents a pair of line. Find the acute angle between them:

2x2 + xy - y2 + x + 4y - 3 = 0


If the lines given by ax2 + 2hxy + by2 = 0 form an equilateral triangle with the line lx + my = 1, show that (3a + b)(a + 3b) = 4h2.


If equation ax2 - y2 + 2y + c = 1 represents a pair of perpendicular lines, then find a and c.


The combined equation of the lines through origin and perpendicular to the pair of lines 3x2 + 4xy − 5y2 = 0 is ______


The joint equation of pair of straight lines passing through origin and having slopes `(1 + sqrt2) and (1/(1 + sqrt2))` is ______.


Write the joint equation of co-ordinate axes.


Combined equation of the lines bisecting the angles between the coordinate axes, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×