Advertisements
Advertisements
प्रश्न
Find k, if the sum of the slopes of the lines given by x2 + kxy − 3y2 = 0 is equal to their product.
उत्तर
Comparing the equation x2 + kxy − 3y2 = 0 with ax2 + 2hxy + by2 = 0, we get,
a = 1, 2h = k, b = −3
Let m1 and m2 be the slopes of the lines represented by x2 + kxy − 3y2 = 0.
∴ m1 + m2 = `(− 2"h")/"b" = (−"k")/(−3) = "k"/3`
m1m2 = `"a"/"b" = 1/(−3) = (−1)/3`
Now, m1 + m2 = m1m2 ...(Given)
∴ `"k"/3 = (−1)/3`
∴ k = −1.
APPEARS IN
संबंधित प्रश्न
Find the combined equation of the following pair of line:
2x + y = 0 and 3x − y = 0
Find the combined equation of the following pair of line passing through (−1, 2), one is parallel to x + 3y − 1 = 0 and other is perpendicular to 2x − 3y − 1 = 0
Find the separate equation of the line represented by the following equation:
`3"x"^2 - 2sqrt3"xy" - 3"y"^2 = 0`
Find the separate equation of the line represented by the following equation:
x2 + 2xy tan α - y2 = 0
If the slope of one of the two lines given by `"x"^2/"a" + "2xy"/"h" + "y"^2/"b" = 0` is twice that of the other, then ab : h2 = ______.
Choose correct alternatives:
The combined equation of the coordinate axes is
Find the joint equation of the line:
x + y - 3 = 0 and 2x + y - 1 = 0
Find the joint equation of the line passing through the origin and having inclinations 60° and 120°.
Find the joint equation of the line passing through (3, 2) and parallel to the lines x = 2 and y = 3.
Find the joint equation of the line passing through the point (3, 2), one of which is parallel to the line x - 2y = 2, and other is perpendicular to the line y = 3.
Find the joint equation of the line passing through the origin and perpendicular to the lines x + 2y = 19 and 3x + y = 18
Find the joint equation of the line passing through (-1, 2) and perpendicular to the lines x + 2y + 3 = 0 and 3x - 4y - 5 = 0
Show that the following equations represents a pair of line:
x2 + 2xy - y2 = 0
Show that the following equations represent a pair of line:
x2 + 7xy - 2y2 = 0
Show that the following equations represent a pair of line:
`"x"^2 - 2sqrt3"xy" - "y"^2 = 0`
Find the separate equation of the line represented by the following equation:
2x2 + 2xy - y2 = 0
Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by
2x2 - 3xy - 9y2 = 0
Find k, if the sum of the slopes of the lines given by 3x2 + kxy - y2 = 0 is zero.
Find k, if one of the lines given by 6x2 + kxy + y2 = 0 is 2x + y = 0.
Find the joint equation of the pair of lines through the origin and making an equilateral triangle with the line x = 3.
Find an if the sum of the slope of lines represented by ax2 + 8xy + 5y2 = 0 is twice their product.
If the line 4x - 5y = 0 coincides with one of the lines given by ax2 + 2hxy + by2 = 0, then show that 25a + 40h + 16b = 0
Show that the following equation represents a pair of line. Find the acute angle between them:
2x2 + xy - y2 + x + 4y - 3 = 0
The combined equation of the two lines passing through the origin, each making angle 45° and 135° with the positive X-axis is ______
The joint equation of pair of straight lines passing through origin and having slopes `(1 + sqrt2) and (1/(1 + sqrt2))` is ______.
The joint equation of pair of lines having slopes 2 and 5 and passing through the origin is ______.
Write the separate equations of lines represented by the equation 5x2 – 9y2 = 0
Find the combined equation of the pair of lines passing through the origin and perpendicular to the lines represented by 3x2 + 2xy – y2 = 0.
Combined equation of the lines bisecting the angles between the coordinate axes, is ______.
Find the joint equation of the pair of lines through the origin and perpendicular to the lines given by 2x2 + 7xy + 3y2 = 0