मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the joint equation of the line passing through the point (3, 2), one of which is parallel to the line x - 2y = 2 and other is perpendicular to the line y = 3. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the joint equation of the line passing through the point (3, 2), one of which is parallel to the line x - 2y = 2, and other is perpendicular to the line y = 3.

बेरीज

उत्तर

Let L1 be the line passes through (3, 2) and parallel to the line x - 2y = 2 whose slope is `(-1)/-2 = 1/2`

∴ slope of the line L1 is `1/2`

∴ equation of the line L2 is

y - 2 =`1/2`(x - 3)

∴ 2y - 4 = x - 3

∴ x - 2y + 1 = 0

Let L2 be the line passes through (3, 2) and perpendicular to the line y = 3.

∴ equation of the line L2 is of the form x = a. Since L2 passes through (3, 2), 3 = a.

∴ equation of the line L2 is x = 3, i.e. x - 3 = 0 

Hence, the equations of the required lines are

x - 2y + 1 = 0 and x - 3 = 0

∴ their joint equation is

(x - 2y + 1)(x - 3) = 0

∴ x2 - 2xy + x - 3x + 6y - 3 = 0

∴ x2 - 2xy - 2x + 6y - 3 = 0

shaalaa.com
Combined Equation of a Pair Lines
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Pair of Straight Lines - Miscellaneous Exercise 4 [पृष्ठ १३१]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Pair of Straight Lines
Miscellaneous Exercise 4 | Q 1.1 | पृष्ठ १३१

संबंधित प्रश्‍न

Find the combined equation of the following pair of line:

x + 2y - 1 = 0 and x - 3y + 2 = 0


Find the combined equation of the following pair of lines:

Passing through (2, 3) and perpendicular to the lines 3x + 2y – 1 = 0 and x – 3y + 2 = 0.


Find the combined equation of the following pair of line passing through (−1, 2), one is parallel to x + 3y − 1 = 0 and other is perpendicular to 2x − 3y − 1 = 0


Find the separate equation of the line represented by the following equation:

3y2 + 7xy = 0 


Find the separate equation of the line represented by the following equation:

`3"x"^2 - 2sqrt3"xy" - 3"y"^2 = 0`


Find the separate equation of the line represented by the following equation:

x2 + 2(cosec α)xy + y2 = 0


Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by following equation:

5x2 - 8xy + 3y2 = 0 


Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:

3x2 -  4xy = 0 


Choose correct alternatives:

Auxiliary equation of 2x2 + 3xy - 9y2 = 0 is


Choose correct alternatives:

The joint equation of the lines through the origin and perpendicular to the pair of lines 3x2 + 4xy – 5y2 = 0 is _______.


Choose correct alternatives:

If the equation 3x2 – 8xy + qy2 + 2x + 14y + p = 1 represents a pair of perpendicular lines, then the values of p and q are respectively ______.


Choose correct alternatives:

The combined equation of the coordinate axes is


Choose correct alternatives:

If h2 = ab, then slopes of lines ax2 + 2hxy + by2 = 0 are in the ratio


Find the joint equation of the line:

x - y = 0 and x + y = 0


Find the joint equation of the line passing through the origin and having inclinations 60° and 120°.


Find the joint equation of the line passing through (3, 2) and parallel to the lines x = 2 and y  = 3.


Find the joint equation of the line passing through the origin and perpendicular to the lines x + 2y = 19 and 3x + y = 18


Find the joint equation of the line passing through (-1, 2) and perpendicular to the lines  x + 2y + 3 = 0 and 3x - 4y - 5 = 0


Find the separate equation of the line represented by the following equation:

6x2 - 5xy - 6y2 = 0


Find the separate equation of the line represented by the following equation:

3x2 - y2 = 0


Find the separate equation of the line represented by the following equation:

2x2 + 2xy - y2 = 0


Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by

x2 + 4xy - 5y2 = 0


Find k, if the sum of the slopes of the lines given by 3x2 + kxy - y2 = 0 is zero.


If the line 4x - 5y = 0 coincides with one of the lines given by ax2 + 2hxy + by2 = 0, then show that 25a + 40h + 16b = 0


Show that the following equation represents a pair of line. Find the acute angle between them:

(x - 3)2 + (x - 3)(y - 4) - 2(y - 4)2 = 0


If the line x + 2 = 0 coincides with one of the lines represented by the equation x2 + 2xy + 4y + k = 0, then prove that k = - 4. 


Find k if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.


Find the joint equation of the line passing through the origin and having slopes 1 + `sqrt3` and 1 - `sqrt3`


The combined equation of the lines through origin and perpendicular to the pair of lines 3x2 + 4xy − 5y2 = 0 is ______


Show that the combined equation of pair of lines passing through the origin is a homogeneous equation of degree 2 in x and y. Hence find the combined equation of the lines 2x + 3y = 0 and x − 2y = 0


The joint equation of pair of lines through the origin, each of which makes an angle of 60° with Y-axis, is ______ 


The equation of line passing through the midpoint of the line joining the points (-1, 3, -2) and (-5, 3, -6) and equally inclined to the axes is ______.


The joint equation of pair of lines having slopes 2 and 5 and passing through the origin is ______.


The line 5x + y – 1 = 0 coincides with one of the lines given by 5x2 + xy – kx – 2y + 2 = 0 then the value of k is ______.


Find the combined equation of the pair of lines passing through the origin and perpendicular to the lines represented by 3x2 + 2xy – y2 = 0.


If `x^2/a + y^2/b + (2xy)/h` = 0 represents a pair of lines and slope of one line is twice the other, then find the value of ab : h2.


Combined equation of the lines bisecting the angles between the coordinate axes, is ______.


Find the joint equation of the pair of lines through the origin and perpendicular to the lines given by 2x2 + 7xy + 3y2 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×