मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the joint equation of the line passing through the origin and having inclinations 60° and 120°. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the joint equation of the line passing through the origin and having inclinations 60° and 120°.

बेरीज

उत्तर

Slope of the line having inclination θ is tan θ.

Inclinations of the given lines are 60° and 120°

∴ their slopes are m1 = tan 60° = `sqrt3` and

m2 = tan 120° = tan (180° - 60°)

= - tan 60° = - `sqrt 3`.

Since the lines pass through the origin, their equations are

y = `sqrt3"x"` and y = `- sqrt3"x"`

i.e. `sqrt3"x - y" = 0` and `sqrt3"x + y" = 0`

∴ the joint equation of these lines is

`(sqrt3"x - y")(sqrt3"x + y") = 0`

∴ 3x2 - y2 = 0

shaalaa.com
Combined Equation of a Pair Lines
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Pair of Straight Lines - Miscellaneous Exercise 4 [पृष्ठ १३०]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Pair of Straight Lines
Miscellaneous Exercise 4 | Q 1.04 | पृष्ठ १३०

संबंधित प्रश्‍न

Find the combined equation of the following pair of line:

x + 2y - 1 = 0 and x - 3y + 2 = 0


Find the combined equation of the following pair of lines:

Passing through (2, 3) and perpendicular to the lines 3x + 2y – 1 = 0 and x – 3y + 2 = 0.


Find the separate equation of the line represented by the following equation:

5x2 – 9y2 = 0


Find the separate equation of the line represented by the following equation:

`3"x"^2 - 2sqrt3"xy" - 3"y"^2 = 0`


Find the separate equation of the line represented by the following equation:

x2 + 2(cosec α)xy + y2 = 0


Find the separate equation of the line represented by the following equation:

x2 + 2xy tan α - y2 = 0


Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by following equation:

5x2 - 8xy + 3y2 = 0 


Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:

xy + y2 = 0 


Choose correct alternatives:

The combined equation of the coordinate axes is


Find the joint equation of the line:

x - y = 0 and x + y = 0


Find the joint equation of the line:

x + y - 3 = 0 and 2x + y - 1 = 0


Find the joint equation of the line passing through (1, 2) and parallel to the coordinate axes


Find the joint equation of the line passing through (3, 2) and parallel to the lines x = 2 and y  = 3.


Find the joint equation of the line passing through (-1, 2) and perpendicular to the lines  x + 2y + 3 = 0 and 3x - 4y - 5 = 0


Show that the following equations represent a pair of line:

`"x"^2 - 2sqrt3"xy" - "y"^2 = 0`


Find the separate equation of the line represented by the following equation:

x2 - 4y2 = 0


Find the separate equation of the line represented by the following equation:

3x2 - y2 = 0


Find the separate equation of the line represented by the following equation:

2x2 + 2xy - y2 = 0


Find k, if the sum of the slopes of the lines given by 3x2 + kxy - y2 = 0 is zero.


Find k, if the sum of the slopes of the lines given by x2 + kxy − 3y2 = 0 is equal to their product.


Find k, if one of the lines given by 6x2 + kxy + y2 = 0 is 2x + y = 0.


Show that the following equation represents a pair of line. Find the acute angle between them:

2x2 + xy - y2 + x + 4y - 3 = 0


Show that the following equation represents a pair of line. Find the acute angle between them:

(x - 3)2 + (x - 3)(y - 4) - 2(y - 4)2 = 0


Show that the combined equation of the pair of lines passing through the origin and each making an angle α with the line x + y = 0 is x2 + 2(sec 2α)xy + y2 = 0


Find the condition that the equation ay2 + bxy + ex + dy = 0 may represent a pair of lines. 


If the lines given by ax2 + 2hxy + by2 = 0 form an equilateral triangle with the line lx + my = 1, show that (3a + b)(a + 3b) = 4h2.


If the line x + 2 = 0 coincides with one of the lines represented by the equation x2 + 2xy + 4y + k = 0, then prove that k = - 4. 


Prove that the combined of the pair of lines passing through the origin and perpendicular to the lines ax2 + 2hxy + by2 = 0 is bx2 - 2hxy + ay2 = 0.


Show that the combined equation of pair of lines passing through the origin is a homogeneous equation of degree 2 in x and y. Hence find the combined equation of the lines 2x + 3y = 0 and x − 2y = 0


The joint equation of pair of straight lines passing through origin and having slopes `(1 + sqrt2) and (1/(1 + sqrt2))` is ______.


The joint equation of pair of lines having slopes `1+sqrt2` and `1-sqrt2` and passing through the origin is ______.


The combined equation of the lines which pass through the origin and each of which makes an angle of 30° with the line 3x + 2y – 11 = 0 is ______.


Write the separate equations of lines represented by the equation 5x2 – 9y2 = 0


The line 5x + y – 1 = 0 coincides with one of the lines given by 5x2 + xy – kx – 2y + 2 = 0 then the value of k is ______.


If `x^2/a + y^2/b + (2xy)/h` = 0 represents a pair of lines and slope of one line is twice the other, then find the value of ab : h2.


Find the joint equation of the pair of lines through the origin and perpendicular to the lines given by 2x2 + 7xy + 3y2 = 0


Find the combined equation of y-axis and the line through the origin having slope 3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×