Advertisements
Advertisements
प्रश्न
Show that the following equation represents a pair of line. Find the acute angle between them:
2x2 + xy - y2 + x + 4y - 3 = 0
उत्तर
Comparing this equation with
ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, we get,
a = 2, h = `1/2`, b = - 1, g = `1/2`, f = 2 and c = -3
Now, abc + 2fgh - af2 - bg2 - ch2 = 0
`=2(-1)(-3)+2(2)(1/2)(1/2)-2(2)^2-(-1)(1/2)^2-(-3)(1/2)^2`
`=6+1-8+1/4+3/4`
`=7-8+1`
`=8-8=0`
And, `h^2-ab=(1/2)^2-(2)(-1)`
`=1/4+2=9/4>0`
∴ the given equation represents a pair of lines.
Let θ be the acute angle between the lines.
∴ tan θ = `|(2sqrt("h"^2 - "ab"))/("a + b")|`
`= |(2sqrt((9/4)))/(2 - 1)|`
`= |2 xx3/2| = 3`
∴ tan θ = tan 3
∴ θ = tan-1 (3)
APPEARS IN
संबंधित प्रश्न
Find the combined equation of the following pair of line:
x + 2y - 1 = 0 and x - 3y + 2 = 0
Find the combined equation of the following pair of line passing through (−1, 2), one is parallel to x + 3y − 1 = 0 and other is perpendicular to 2x − 3y − 1 = 0
Find the separate equation of the line represented by the following equation:
3y2 + 7xy = 0
Find the separate equation of the line represented by the following equation:
x2 + 2xy tan α - y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
5x2 + 2xy - 3y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
xy + y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
3x2 - 4xy = 0
Choose correct alternatives:
If two lines ax2 + 2hxy + by2 = 0 make angles α and β with X-axis, then tan (α + β) = _____.
Choose correct alternatives:
The joint equation of the lines through the origin and perpendicular to the pair of lines 3x2 + 4xy – 5y2 = 0 is _______.
Choose correct alternatives:
If h2 = ab, then slopes of lines ax2 + 2hxy + by2 = 0 are in the ratio
Find the joint equation of the line passing through (1, 2) and parallel to the coordinate axes
Find the joint equation of the line passing through the origin and perpendicular to the lines x + 2y = 19 and 3x + y = 18
Show that the following equations represents a pair of line:
4x2 + 4xy + y2 = 0
Find the separate equation of the line represented by the following equation:
3x2 - y2 = 0
Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by
x2 + 4xy - 5y2 = 0
Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by
2x2 - 3xy - 9y2 = 0
Find k, if one of the lines given by 3x2 - kxy + 5y2 = 0 is perpendicular to the line 5x + 3y = 0.
Find k, if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.
Find k, if one of the lines given by 6x2 + kxy + y2 = 0 is 2x + y = 0.
Find the joint equation of the pair of lines through the origin and making an equilateral triangle with the line x = 3.
Find an if the sum of the slope of lines represented by ax2 + 8xy + 5y2 = 0 is twice their product.
Find the condition that the equation ay2 + bxy + ex + dy = 0 may represent a pair of lines.
If equation ax2 - y2 + 2y + c = 1 represents a pair of perpendicular lines, then find a and c.
The equation of line passing through the midpoint of the line joining the points (-1, 3, -2) and (-5, 3, -6) and equally inclined to the axes is ______.
The joint equation of pair of lines having slopes 2 and 5 and passing through the origin is ______.
The combined equation of the lines which pass through the origin and each of which makes an angle of 30° with the line 3x + 2y – 11 = 0 is ______.
The line 5x + y – 1 = 0 coincides with one of the lines given by 5x2 + xy – kx – 2y + 2 = 0 then the value of k is ______.
Write the joint equation of co-ordinate axes.
If `x^2/a + y^2/b + (2xy)/h` = 0 represents a pair of lines and slope of one line is twice the other, then find the value of ab : h2.
Find the joint equation of the pair of lines through the origin and perpendicular to the lines given by 2x2 + 7xy + 3y2 = 0