Advertisements
Advertisements
प्रश्न
Show that the following equation represents a pair of line. Find the acute angle between them:
2x2 + xy - y2 + x + 4y - 3 = 0
उत्तर
Comparing this equation with
ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, we get,
a = 2, h = `1/2`, b = - 1, g = `1/2`, f = 2 and c = -3
Now, abc + 2fgh - af2 - bg2 - ch2 = 0
`=2(-1)(-3)+2(2)(1/2)(1/2)-2(2)^2-(-1)(1/2)^2-(-3)(1/2)^2`
`=6+1-8+1/4+3/4`
`=7-8+1`
`=8-8=0`
And, `h^2-ab=(1/2)^2-(2)(-1)`
`=1/4+2=9/4>0`
∴ the given equation represents a pair of lines.
Let θ be the acute angle between the lines.
∴ tan θ = `|(2sqrt("h"^2 - "ab"))/("a + b")|`
`= |(2sqrt((9/4)))/(2 - 1)|`
`= |2 xx3/2| = 3`
∴ tan θ = tan 3
∴ θ = tan-1 (3)
APPEARS IN
संबंधित प्रश्न
Find the combined equation of the following pair of lines:
Passing through (2, 3) and perpendicular to the lines 3x + 2y – 1 = 0 and x – 3y + 2 = 0.
Find the combined equation of the following pair of line passing through (−1, 2), one is parallel to x + 3y − 1 = 0 and other is perpendicular to 2x − 3y − 1 = 0
Find the separate equation of the line represented by the following equation:
x2 - 4xy = 0
Find the separate equation of the line represented by the following equation:
`3"x"^2 - 2sqrt3"xy" - 3"y"^2 = 0`
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
5x2 + 2xy - 3y2 = 0
Choose correct alternatives:
The joint equation of the lines through the origin and perpendicular to the pair of lines 3x2 + 4xy – 5y2 = 0 is _______.
The area of triangle formed by the lines x2 + 4xy + y2 = 0 and x - y - 4 = 0 is ______.
Choose correct alternatives:
If slope of one of the lines ax2 + 2hxy + by2 = 0 is 5 times the slope of the other, then 5h2 = ______
Find the joint equation of the line passing through the origin and having inclinations 60° and 120°.
Find the joint equation of the line passing through (1, 2) and parallel to the coordinate axes
Find the joint equation of the line passing through (3, 2) and parallel to the lines x = 2 and y = 3.
Find the joint equation of the line passing through (-1, 2) and perpendicular to the lines x + 2y + 3 = 0 and 3x - 4y - 5 = 0
Show that the following equations represents a pair of line:
4x2 + 4xy + y2 = 0
Show that the following equations represent a pair of line:
x2 + 7xy - 2y2 = 0
Show that the following equations represent a pair of line:
`"x"^2 - 2sqrt3"xy" - "y"^2 = 0`
Find the separate equation of the line represented by the following equation:
6x2 - 5xy - 6y2 = 0
Find the separate equation of the line represented by the following equation:
2x2 + 2xy - y2 = 0
Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by
x2 + 4xy - 5y2 = 0
Find k, if the sum of the slopes of the lines given by x2 + kxy − 3y2 = 0 is equal to their product.
Find k, if one of the lines given by 3x2 - kxy + 5y2 = 0 is perpendicular to the line 5x + 3y = 0.
Find k, if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.
Find the combined equation of bisectors of angles between the lines represented by 5x2 + 6xy - y2 = 0.
Find an if the sum of the slope of lines represented by ax2 + 8xy + 5y2 = 0 is twice their product.
If the line 4x - 5y = 0 coincides with one of the lines given by ax2 + 2hxy + by2 = 0, then show that 25a + 40h + 16b = 0
Show that the combined equation of the pair of lines passing through the origin and each making an angle α with the line x + y = 0 is x2 + 2(sec 2α)xy + y2 = 0
Find the joint equation of the line passing through the origin and having slopes 1 + `sqrt3` and 1 - `sqrt3`
The combined equation of the two lines passing through the origin, each making angle 45° and 135° with the positive X-axis is ______
Show that the combined equation of pair of lines passing through the origin is a homogeneous equation of degree 2 in x and y. Hence find the combined equation of the lines 2x + 3y = 0 and x − 2y = 0
The joint equation of the lines through the origin which forms two of the sides of the equilateral triangle having x = 2 as the third side is ______
The equation of line passing through the midpoint of the line joining the points (-1, 3, -2) and (-5, 3, -6) and equally inclined to the axes is ______.
Write the joint equation of co-ordinate axes.
Find the combined equation of the pair of lines passing through the origin and perpendicular to the lines represented by 3x2 + 2xy – y2 = 0.
If `x^2/a + y^2/b + (2xy)/h` = 0 represents a pair of lines and slope of one line is twice the other, then find the value of ab : h2.
Combined equation of the lines bisecting the angles between the coordinate axes, is ______.
Find k, if one of the lines given by kx2 – 5xy – 3y2 = 0 is perpendicular to the line x – 2y + 3 = 0