हिंदी

Find a if the sum of slope of lines represented by ax2 + 8xy + 5y2 = 0 is twice their product. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find an if the sum of the slope of lines represented by ax2 + 8xy + 5y2 = 0 is twice their product.

योग

उत्तर

Comparing the equation ax2 + 8xy + 5y2 = 0 with ax2 + 2hxy + by2 = 0,

we get, a = a, 2h = 8, b = 5

Let m1 and m2 be the slopes of the lines represented by ax2 + 8xy + 5y2 = 0.

∴ m1 + m2 = `(- 2"h")/"b" = -8/5`

and m1m2 = `"a"/"b" = "a"/5`

Now, (m1 + m2) = 2(m1m2)

`-8/5 = 2("a"/5)`

a = - 4

shaalaa.com
Combined Equation of a Pair Lines
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Pair of Straight Lines - Miscellaneous Exercise 4 [पृष्ठ १३२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Pair of Straight Lines
Miscellaneous Exercise 4 | Q 11 | पृष्ठ १३२

संबंधित प्रश्न

Find the separate equation of the line represented by the following equation:

5x2 – 9y2 = 0


Find the separate equation of the line represented by the following equation:

x2 - 4xy = 0 


Find the separate equation of the line represented by the following equation:

x2 + 2xy tan α - y2 = 0


Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:

xy + y2 = 0 


Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:

3x2 -  4xy = 0 


If the slope of one of the two lines given by `"x"^2/"a" + "2xy"/"h" + "y"^2/"b" = 0` is twice that of the other, then ab : h2 = ______.


Choose correct alternatives:

The joint equation of the lines through the origin and perpendicular to the pair of lines 3x2 + 4xy – 5y2 = 0 is _______.


Choose correct alternatives:

If the equation 3x2 – 8xy + qy2 + 2x + 14y + p = 1 represents a pair of perpendicular lines, then the values of p and q are respectively ______.


The area of triangle formed by the lines x2 + 4xy + y2 = 0 and x - y - 4 = 0 is ______.


Choose correct alternatives:

If h2 = ab, then slopes of lines ax2 + 2hxy + by2 = 0 are in the ratio


Choose correct alternatives:

If distance between lines (x - 2y)2 + k(x - 2y) = 0 is 3 units, then k = ______.


Find the joint equation of the line passing through the origin having slopes 2 and 3.


Find the joint equation of the line passing through the origin and having inclinations 60° and 120°.


Find the joint equation of the line passing through (-1, 2) and perpendicular to the lines  x + 2y + 3 = 0 and 3x - 4y - 5 = 0


Show that the following equations represent a pair of line:

`"x"^2 - 2sqrt3"xy" - "y"^2 = 0`


Find the separate equation of the line represented by the following equation:

6x2 - 5xy - 6y2 = 0


Find the separate equation of the line represented by the following equation:

2x2 + 2xy - y2 = 0


Find k, if the sum of the slopes of the lines given by x2 + kxy − 3y2 = 0 is equal to their product.


Find k, if the slope of one of the lines given by 3x2 - 4xy + ky2 = 0 is 1.


Find k, if one of the lines given by 3x2 - kxy + 5y2 = 0 is perpendicular to the line 5x + 3y = 0.


Find k, if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.


Show that the following equation represents a pair of line. Find the acute angle between them:

2x2 + xy - y2 + x + 4y - 3 = 0


Show that the following equation represents a pair of line. Find the acute angle between them:

(x - 3)2 + (x - 3)(y - 4) - 2(y - 4)2 = 0


If the line x + 2 = 0 coincides with one of the lines represented by the equation x2 + 2xy + 4y + k = 0, then prove that k = - 4. 


Find the joint equation of the line passing through the origin and having slopes 1 + `sqrt3` and 1 - `sqrt3`


The joint equation of pair of lines through the origin, each of which makes an angle of 60° with Y-axis, is ______ 


The joint equation of pair of lines having slopes `1+sqrt2` and `1-sqrt2` and passing through the origin is ______.


Write the joint equation of co-ordinate axes.


Find the combined equation of the pair of lines passing through the origin and perpendicular to the lines represented by 3x2 + 2xy – y2 = 0.


Find the combined equation of y-axis and the line through the origin having slope 3.


Find k, if one of the lines given by kx2 – 5xy – 3y2 = 0 is perpendicular to the line x – 2y + 3 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×