Advertisements
Advertisements
प्रश्न
Find the joint equation of the line passing through (-1, 2) and perpendicular to the lines x + 2y + 3 = 0 and 3x - 4y - 5 = 0
उत्तर
Let L1 and L2 be the lines passing through the origin and perpendicular to the lines x + 2y + 3 = 0 and 3x - 4y - 5 = 0 respectively.
Slopes of the lines x + 2y + 3 = 0 and 3x - 4y - 5 = 0 are `-1/2` and `- 3/-4 = 3/4` respectively.
∴ slopes of the lines L1 and L2 are `2` and `(-4)/3` respectively.
Since the lines L1 and L2 pass through the point (-1, 2), their equations are
∴ (y - y1) = m(x - x1)
∴ (y - 2)= 2(x + 1)
⇒ y - 2 = 2x + 2
⇒ 2x - y + 4 = 0 and
∴ (y - 2) = `((-4)/3)`(x + 1)
⇒ 3y - 6 = (- 4)(x + 1)
⇒ 3y - 6 = - 4x - 4
⇒ 4x + 3y - 6 + 4 = 0
⇒ 4x + 3y - 2 = 0
their combined equation is
∴ (2x - y + 4)(4x + 3y - 2) = 0
∴ 8x2 + 6xy - 4x - 4xy - 3y2 + 2y + 16x + 12y - 8 = 0
∴ 8x2 + 2xy + 12x - 3y2 + 14y - 8 = 0
APPEARS IN
संबंधित प्रश्न
Find the combined equation of the following pair of lines:
Passing through (2, 3) and perpendicular to the lines 3x + 2y – 1 = 0 and x – 3y + 2 = 0.
Find the separate equation of the line represented by the following equation:
5x2 – 9y2 = 0
Find the separate equation of the line represented by the following equation:
x2 + 2(cosec α)xy + y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
5x2 + 2xy - 3y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
xy + y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
3x2 - 4xy = 0
Choose correct alternatives:
The combined equation of the coordinate axes is
Choose correct alternatives:
If distance between lines (x - 2y)2 + k(x - 2y) = 0 is 3 units, then k = ______.
Find the joint equation of the line:
x + y - 3 = 0 and 2x + y - 1 = 0
Find the joint equation of the line passing through (1, 2) and parallel to the coordinate axes
Find the joint equation of the line passing through the origin and perpendicular to the lines x + 2y = 19 and 3x + y = 18
Show that the following equations represent a pair of line:
x2 - y2 = 0
Show that the following equations represent a pair of line:
x2 + 7xy - 2y2 = 0
Show that the following equations represent a pair of line:
`"x"^2 - 2sqrt3"xy" - "y"^2 = 0`
Find the separate equation of the line represented by the following equation:
6x2 - 5xy - 6y2 = 0
Find the separate equation of the line represented by the following equation:
x2 - 4y2 = 0
Find the separate equation of the line represented by the following equation:
3x2 - y2 = 0
Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by
2x2 - 3xy - 9y2 = 0
Find k, if the sum of the slopes of the lines given by x2 + kxy − 3y2 = 0 is equal to their product.
Show that the following equation represents a pair of line. Find the acute angle between them:
2x2 + xy - y2 + x + 4y - 3 = 0
Find the condition that the equation ay2 + bxy + ex + dy = 0 may represent a pair of lines.
If the lines given by ax2 + 2hxy + by2 = 0 form an equilateral triangle with the line lx + my = 1, show that (3a + b)(a + 3b) = 4h2.
If the line x + 2 = 0 coincides with one of the lines represented by the equation x2 + 2xy + 4y + k = 0, then prove that k = - 4.
Prove that the combined of the pair of lines passing through the origin and perpendicular to the lines ax2 + 2hxy + by2 = 0 is bx2 - 2hxy + ay2 = 0.
Find k if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.
The joint equation of pair of straight lines passing through origin and having slopes `(1 + sqrt2) and (1/(1 + sqrt2))` is ______.
The joint equation of the lines through the origin which forms two of the sides of the equilateral triangle having x = 2 as the third side is ______
The joint equation of pair of lines having slopes 2 and 5 and passing through the origin is ______.
The combined equation of the lines which pass through the origin and each of which makes an angle of 30° with the line 3x + 2y – 11 = 0 is ______.
The line 5x + y – 1 = 0 coincides with one of the lines given by 5x2 + xy – kx – 2y + 2 = 0 then the value of k is ______.
Combined equation of the lines bisecting the angles between the coordinate axes, is ______.
Find the combined equation of y-axis and the line through the origin having slope 3.
Find k, if one of the lines given by kx2 – 5xy – 3y2 = 0 is perpendicular to the line x – 2y + 3 = 0