हिंदी

Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by following equation: 5x2 + 2xy - 3y2 = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:

5x2 + 2xy - 3y2 = 0 

योग

उत्तर

Comparing the equation 5x2 + 2xy - 3y2 = 0  with ax2 + 2hxy + by2 = 0, we get,

a = 5, 2h = 2, b= - 3

Let m1 and m2 be the slopes of the lines represented by 5x2 + 2xy - 3y2 = 0  

∴ `"m"_1 + "m"_2 = (-2"h")/"b" = (-2)/-3 = 2/3` and `"m"_1 "m"_2 = "a"/"b" = 5/-3`   ....(1)

Now required lines are perpendicular to these lines

∴ their slopes are `(-1)/"m"_1` and `(-1)/"m"_2`

Since these lines are passing through the origin, their separate equations are

y = `(-1)/"m"_1 "x"` and y = `(-1)/"m"_2 "x"`

i.e. m1y = - x and m2y = - x

i.e. x + m1y = 0 and x + m2y = 0

∴ their combined equation is

(x + m1y)(x + m2y) = 0

∴ x2 + (m1 + m2)xy + m1m2y2 = 0 

∴ `"x"^2 + 2/3 "xy" - 5/3 "y"^2 = 0`  ...[By (1)]

∴ 3x2 + 2xy - 5y2 = 0 

shaalaa.com

Notes

The answer in the textbook is incorrect.
Combined Equation of a Pair Lines
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Pair of Straight Lines - Exercise 4.1 [पृष्ठ ११९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Pair of Straight Lines
Exercise 4.1 | Q 3.2 | पृष्ठ ११९

संबंधित प्रश्न

Find the separate equation of the line represented by the following equation:

3y2 + 7xy = 0 


Find the separate equation of the line represented by the following equation:

5x2 – 9y2 = 0


Find the separate equation of the line represented by the following equation:

x2 + 2(cosec α)xy + y2 = 0


Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by following equation:

5x2 - 8xy + 3y2 = 0 


Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:

xy + y2 = 0 


Choose correct alternatives:

If two lines ax2 + 2hxy + by2 = 0 make angles α and β with X-axis, then tan (α + β) = _____.


Choose correct alternatives:

The joint equation of the lines through the origin and perpendicular to the pair of lines 3x2 + 4xy – 5y2 = 0 is _______.


Choose correct alternatives:

The combined equation of the coordinate axes is


Choose correct alternatives:

If slope of one of the lines ax2 + 2hxy + by2 = 0 is 5 times the slope of the other, then 5h2 = ______


Find the joint equation of the line:

x - y = 0 and x + y = 0


Find the joint equation of the line:

x + y - 3 = 0 and 2x + y - 1 = 0


Find the joint equation of the line passing through the origin and having inclinations 60° and 120°.


Find the joint equation of the line which are at a distance of 9 units from the Y-axis.


Find the joint equation of the line passing through the point (3, 2), one of which is parallel to the line x - 2y = 2, and other is perpendicular to the line y = 3.


Find the joint equation of the line passing through (-1, 2) and perpendicular to the lines  x + 2y + 3 = 0 and 3x - 4y - 5 = 0


Show that the following equations represent a pair of line:

`"x"^2 - 2sqrt3"xy" - "y"^2 = 0`


Find the separate equation of the line represented by the following equation:

6x2 - 5xy - 6y2 = 0


Find the separate equation of the line represented by the following equation:

x2 - 4y2 = 0


Find the separate equation of the line represented by the following equation:

2x2 + 2xy - y2 = 0


Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by

2x2 - 3xy - 9y2 = 0


Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by

x2 + xy - y2 = 0


Find k, if the sum of the slopes of the lines given by 3x2 + kxy - y2 = 0 is zero.


Find k, if the sum of the slopes of the lines given by x2 + kxy − 3y2 = 0 is equal to their product.


Find k, if the slope of one of the lines given by 3x2 - 4xy + ky2 = 0 is 1.


Find the joint equation of the pair of lines through the origin and making an equilateral triangle with the line x = 3.


If the line 4x - 5y = 0 coincides with one of the lines given by ax2 + 2hxy + by2 = 0, then show that 25a + 40h + 16b = 0


Show that the following equation represents a pair of line. Find the acute angle between them:

(x - 3)2 + (x - 3)(y - 4) - 2(y - 4)2 = 0


Show that the combined equation of the pair of lines passing through the origin and each making an angle α with the line x + y = 0 is x2 + 2(sec 2α)xy + y2 = 0


The combined equation of the two lines passing through the origin, each making angle 45° and 135° with the positive X-axis is ______  


The joint equation of pair of straight lines passing through origin and having slopes `(1 + sqrt2) and (1/(1 + sqrt2))` is ______.


The equation of line passing through the midpoint of the line joining the points (-1, 3, -2) and (-5, 3, -6) and equally inclined to the axes is ______.


The joint equation of pair of lines having slopes 2 and 5 and passing through the origin is ______.


Find the combined equation of the pair of lines passing through the origin and perpendicular to the lines represented by 3x2 + 2xy – y2 = 0.


Find the joint equation of the pair of lines through the origin and perpendicular to the lines given by 2x2 + 7xy + 3y2 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×