हिंदी

Find the combined equation of the pair of line passing through the origin and perpendicular to the line represented by following equation: 5x2 - 8xy + 3y2 = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by following equation:

5x2 - 8xy + 3y2 = 0 

योग

उत्तर

Comparing the equation 5x2 - 8xy + 3y2 = 0 with ax2 + 2hxy + by2 = 0, we get,

a = 5, 2h = - 8, b= 3

Let m1 and m2 be the slopes of the lines represented by 5x2 - 8xy + 3y2 = 0 

∴ `"m"_1 + "m"_2 = (-2"h")/"b" = 8/3` and `"m"_1 "m"_2 = "a"/"b" = 5/3`   ....(1)

Now required lines are perpendicular to these lines

∴ their slopes are `(-1)/"m"_1` and `(-1)/"m"_2`

Since these lines are passing through the origin, their separate equations are

y = `(-1)/"m"_1 "x"` and y = `(-1)/"m"_2 "x"`

i.e. m1y = - x and m2y = - x

i.e. x + m1y = 0 and x + m2y = 0

∴ their combined equation is

(x + m1y)(x + m2y) = 0

∴ x2 + (m1 + m2)xy + m1m2y2 = 0 

∴ `"x"^2 + 8/3 "xy" + 5/3 "y"^2 = 0`  ...[By (1)]

∴ 3x2 + 8xy + 5y2 = 0 

shaalaa.com
Combined Equation of a Pair Lines
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Pair of Straight Lines - Exercise 4.1 [पृष्ठ ११९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Pair of Straight Lines
Exercise 4.1 | Q 3.1 | पृष्ठ ११९

संबंधित प्रश्न

Find the combined equation of the following pair of line:

2x + y = 0 and 3x − y = 0


Find the combined equation of the following pair of line passing through (−1, 2), one is parallel to x + 3y − 1 = 0 and other is perpendicular to 2x − 3y − 1 = 0


Find the separate equation of the line represented by the following equation:

3y2 + 7xy = 0 


Find the separate equation of the line represented by the following equation:

x2 + 2xy tan α - y2 = 0


If the slope of one of the two lines given by `"x"^2/"a" + "2xy"/"h" + "y"^2/"b" = 0` is twice that of the other, then ab : h2 = ______.


Choose correct alternatives:

The joint equation of the lines through the origin and perpendicular to the pair of lines 3x2 + 4xy – 5y2 = 0 is _______.


Choose correct alternatives:

If the equation 3x2 – 8xy + qy2 + 2x + 14y + p = 1 represents a pair of perpendicular lines, then the values of p and q are respectively ______.


The area of triangle formed by the lines x2 + 4xy + y2 = 0 and x - y - 4 = 0 is ______.


Choose correct alternatives:

If h2 = ab, then slopes of lines ax2 + 2hxy + by2 = 0 are in the ratio


Choose correct alternatives:

If distance between lines (x - 2y)2 + k(x - 2y) = 0 is 3 units, then k = ______.


Find the joint equation of the line:

x - y = 0 and x + y = 0


Find the joint equation of the line passing through the origin having slopes 2 and 3.


Find the joint equation of the line which are at a distance of 9 units from the Y-axis.


Find the joint equation of the line passing through the point (3, 2), one of which is parallel to the line x - 2y = 2, and other is perpendicular to the line y = 3.


Show that the following equations represents a pair of line:

4x2 + 4xy + y2 = 0


Show that the following equations represent a pair of line:

`"x"^2 - 2sqrt3"xy" - "y"^2 = 0`


Find the separate equation of the line represented by the following equation:

x2 - 4y2 = 0


Find the separate equation of the line represented by the following equation:

2x2 + 2xy - y2 = 0


Find an if the sum of the slope of lines represented by ax2 + 8xy + 5y2 = 0 is twice their product.


Show that the following equation represents a pair of line. Find the acute angle between them:

2x2 + xy - y2 + x + 4y - 3 = 0


Show that the following equation represents a pair of line. Find the acute angle between them:

(x - 3)2 + (x - 3)(y - 4) - 2(y - 4)2 = 0


Show that the combined equation of the pair of lines passing through the origin and each making an angle α with the line x + y = 0 is x2 + 2(sec 2α)xy + y2 = 0


If the lines given by ax2 + 2hxy + by2 = 0 form an equilateral triangle with the line lx + my = 1, show that (3a + b)(a + 3b) = 4h2.


If equation ax2 - y2 + 2y + c = 1 represents a pair of perpendicular lines, then find a and c.


Show that the combined equation of pair of lines passing through the origin is a homogeneous equation of degree 2 in x and y. Hence find the combined equation of the lines 2x + 3y = 0 and x − 2y = 0


The joint equation of pair of lines through the origin, each of which makes an angle of 60° with Y-axis, is ______ 


The joint equation of the lines through the origin which forms two of the sides of the equilateral triangle having x = 2 as the third side is ______


Write the separate equations of lines represented by the equation 5x2 – 9y2 = 0


Find the joint equation of the pair of lines through the origin and perpendicular to the lines given by 2x2 + 7xy + 3y2 = 0


Find the combined equation of y-axis and the line through the origin having slope 3.


Find k, if one of the lines given by kx2 – 5xy – 3y2 = 0 is perpendicular to the line x – 2y + 3 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×