Advertisements
Advertisements
प्रश्न
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by following equation:
5x2 - 8xy + 3y2 = 0
उत्तर
Comparing the equation 5x2 - 8xy + 3y2 = 0 with ax2 + 2hxy + by2 = 0, we get,
a = 5, 2h = - 8, b= 3
Let m1 and m2 be the slopes of the lines represented by 5x2 - 8xy + 3y2 = 0
∴ `"m"_1 + "m"_2 = (-2"h")/"b" = 8/3` and `"m"_1 "m"_2 = "a"/"b" = 5/3` ....(1)
Now required lines are perpendicular to these lines
∴ their slopes are `(-1)/"m"_1` and `(-1)/"m"_2`
Since these lines are passing through the origin, their separate equations are
y = `(-1)/"m"_1 "x"` and y = `(-1)/"m"_2 "x"`
i.e. m1y = - x and m2y = - x
i.e. x + m1y = 0 and x + m2y = 0
∴ their combined equation is
(x + m1y)(x + m2y) = 0
∴ x2 + (m1 + m2)xy + m1m2y2 = 0
∴ `"x"^2 + 8/3 "xy" + 5/3 "y"^2 = 0` ...[By (1)]
∴ 3x2 + 8xy + 5y2 = 0
APPEARS IN
संबंधित प्रश्न
Find the combined equation of the following pair of line:
2x + y = 0 and 3x − y = 0
Find the combined equation of the following pair of line passing through (−1, 2), one is parallel to x + 3y − 1 = 0 and other is perpendicular to 2x − 3y − 1 = 0
Find the separate equation of the line represented by the following equation:
3y2 + 7xy = 0
Find the separate equation of the line represented by the following equation:
x2 + 2xy tan α - y2 = 0
If the slope of one of the two lines given by `"x"^2/"a" + "2xy"/"h" + "y"^2/"b" = 0` is twice that of the other, then ab : h2 = ______.
Choose correct alternatives:
The joint equation of the lines through the origin and perpendicular to the pair of lines 3x2 + 4xy – 5y2 = 0 is _______.
Choose correct alternatives:
If the equation 3x2 – 8xy + qy2 + 2x + 14y + p = 1 represents a pair of perpendicular lines, then the values of p and q are respectively ______.
The area of triangle formed by the lines x2 + 4xy + y2 = 0 and x - y - 4 = 0 is ______.
Choose correct alternatives:
If h2 = ab, then slopes of lines ax2 + 2hxy + by2 = 0 are in the ratio
Choose correct alternatives:
If distance between lines (x - 2y)2 + k(x - 2y) = 0 is 3 units, then k = ______.
Find the joint equation of the line:
x - y = 0 and x + y = 0
Find the joint equation of the line passing through the origin having slopes 2 and 3.
Find the joint equation of the line which are at a distance of 9 units from the Y-axis.
Find the joint equation of the line passing through the point (3, 2), one of which is parallel to the line x - 2y = 2, and other is perpendicular to the line y = 3.
Show that the following equations represents a pair of line:
4x2 + 4xy + y2 = 0
Show that the following equations represent a pair of line:
`"x"^2 - 2sqrt3"xy" - "y"^2 = 0`
Find the separate equation of the line represented by the following equation:
x2 - 4y2 = 0
Find the separate equation of the line represented by the following equation:
2x2 + 2xy - y2 = 0
Find an if the sum of the slope of lines represented by ax2 + 8xy + 5y2 = 0 is twice their product.
Show that the following equation represents a pair of line. Find the acute angle between them:
2x2 + xy - y2 + x + 4y - 3 = 0
Show that the following equation represents a pair of line. Find the acute angle between them:
(x - 3)2 + (x - 3)(y - 4) - 2(y - 4)2 = 0
Show that the combined equation of the pair of lines passing through the origin and each making an angle α with the line x + y = 0 is x2 + 2(sec 2α)xy + y2 = 0
If the lines given by ax2 + 2hxy + by2 = 0 form an equilateral triangle with the line lx + my = 1, show that (3a + b)(a + 3b) = 4h2.
If equation ax2 - y2 + 2y + c = 1 represents a pair of perpendicular lines, then find a and c.
Show that the combined equation of pair of lines passing through the origin is a homogeneous equation of degree 2 in x and y. Hence find the combined equation of the lines 2x + 3y = 0 and x − 2y = 0
The joint equation of pair of lines through the origin, each of which makes an angle of 60° with Y-axis, is ______
The joint equation of the lines through the origin which forms two of the sides of the equilateral triangle having x = 2 as the third side is ______
Write the separate equations of lines represented by the equation 5x2 – 9y2 = 0
Find the joint equation of the pair of lines through the origin and perpendicular to the lines given by 2x2 + 7xy + 3y2 = 0
Find the combined equation of y-axis and the line through the origin having slope 3.
Find k, if one of the lines given by kx2 – 5xy – 3y2 = 0 is perpendicular to the line x – 2y + 3 = 0