Advertisements
Advertisements
प्रश्न
Find the combined equation of the following pair of line passing through (−1, 2), one is parallel to x + 3y − 1 = 0 and other is perpendicular to 2x − 3y − 1 = 0
उत्तर
Let L1 be the line passing through the point (−1, 2) and parallel to the line x + 3y − 1 = 0 whose slope is `-1/3`.
∴ slope of the line L1 is `-1/3`
∴ equation of the line L1 is
y − 2 = `- 1/3` (x + 1)
∴ 3y − 6 = − x − 1
∴ x + 3y − 5 = 0
Let L1 be the line passing through (−1, 2) and perpendicular to the line 2x − 3y − 1 = 0 whose slope is `(-2)/-3 = 2/3`
∴ slope of the line L2 is `- 3/2`
∴ equation of the line L2 is
y - 2 = `-3/2`(x + 1)
∴ 2y − 4 = − 3x − 3
∴ 3x + 2y − 1 = 0
Hence, the equations of the required lines are
x + 3y − 5 = 0 and 3x + 2y − 1 = 0
∴ their combined equation is
(x + 3y − 5)(3x + 2y − 1) = 0
∴ 3x2 + 2xy − x + 9xy + 6y2 − 3y − 15x − 10y + 5 = 0
∴ 3x2 + 11xy + 6y2 − 16x −13y + 5 = 0
APPEARS IN
संबंधित प्रश्न
Find the combined equation of the following pair of line:
2x + y = 0 and 3x − y = 0
Find the separate equation of the line represented by the following equation:
3y2 + 7xy = 0
Find the separate equation of the line represented by the following equation:
x2 + 2(cosec α)xy + y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
5x2 + 2xy - 3y2 = 0
Choose correct alternatives:
Auxiliary equation of 2x2 + 3xy - 9y2 = 0 is
Choose correct alternatives:
If two lines ax2 + 2hxy + by2 = 0 make angles α and β with X-axis, then tan (α + β) = _____.
If the slope of one of the two lines given by `"x"^2/"a" + "2xy"/"h" + "y"^2/"b" = 0` is twice that of the other, then ab : h2 = ______.
Choose correct alternatives:
The joint equation of the lines through the origin and perpendicular to the pair of lines 3x2 + 4xy – 5y2 = 0 is _______.
The area of triangle formed by the lines x2 + 4xy + y2 = 0 and x - y - 4 = 0 is ______.
Choose correct alternatives:
The combined equation of the coordinate axes is
Choose correct alternatives:
If slope of one of the lines ax2 + 2hxy + by2 = 0 is 5 times the slope of the other, then 5h2 = ______
Find the joint equation of the line passing through (1, 2) and parallel to the coordinate axes
Find the joint equation of the line which are at a distance of 9 units from the Y-axis.
Find the joint equation of the line passing through the origin and perpendicular to the lines x + 2y = 19 and 3x + y = 18
Show that the following equations represent a pair of line:
x2 + 7xy - 2y2 = 0
Find the separate equation of the line represented by the following equation:
x2 - 4y2 = 0
Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by
x2 + 4xy - 5y2 = 0
Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by
x2 + xy - y2 = 0
Find k, if the sum of the slopes of the lines given by 3x2 + kxy - y2 = 0 is zero.
Find k, if the sum of the slopes of the lines given by x2 + kxy − 3y2 = 0 is equal to their product.
Find k, if one of the lines given by 3x2 - kxy + 5y2 = 0 is perpendicular to the line 5x + 3y = 0.
Find k, if one of the lines given by 6x2 + kxy + y2 = 0 is 2x + y = 0.
Find the joint equation of the pair of lines through the origin and making an equilateral triangle with the line x = 3.
Find an if the sum of the slope of lines represented by ax2 + 8xy + 5y2 = 0 is twice their product.
If the line 4x - 5y = 0 coincides with one of the lines given by ax2 + 2hxy + by2 = 0, then show that 25a + 40h + 16b = 0
If the lines given by ax2 + 2hxy + by2 = 0 form an equilateral triangle with the line lx + my = 1, show that (3a + b)(a + 3b) = 4h2.
If equation ax2 - y2 + 2y + c = 1 represents a pair of perpendicular lines, then find a and c.
Find k if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.
Find the joint equation of the line passing through the origin and having slopes 1 + `sqrt3` and 1 - `sqrt3`
The combined equation of the two lines passing through the origin, each making angle 45° and 135° with the positive X-axis is ______
The joint equation of pair of lines through the origin, each of which makes an angle of 60° with Y-axis, is ______
The joint equation of pair of lines having slopes 2 and 5 and passing through the origin is ______.
The combined equation of the lines which pass through the origin and each of which makes an angle of 30° with the line 3x + 2y – 11 = 0 is ______.
The line 5x + y – 1 = 0 coincides with one of the lines given by 5x2 + xy – kx – 2y + 2 = 0 then the value of k is ______.
Find the combined equation of the pair of lines passing through the origin and perpendicular to the lines represented by 3x2 + 2xy – y2 = 0.
If `x^2/a + y^2/b + (2xy)/h` = 0 represents a pair of lines and slope of one line is twice the other, then find the value of ab : h2.
Find the joint equation of the pair of lines through the origin and perpendicular to the lines given by 2x2 + 7xy + 3y2 = 0
Find the combined equation of y-axis and the line through the origin having slope 3.
Find k, if one of the lines given by kx2 – 5xy – 3y2 = 0 is perpendicular to the line x – 2y + 3 = 0