हिंदी

Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by x2 + 4xy - 5y2 = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by

x2 + 4xy - 5y2 = 0

योग

उत्तर

Comparing the equation x2 + 4xy - 5y2 = 0 with ax2 + 2hxy + by2 = 0, we get,

a = 1, 2h = 4, b = -5

Let m1 and m2 be the slopes of the lines represented by x2 + 4xy - 5y2 = 0

∴ m1 + m2 = `(-"2h")/"b" = 4/5`  and  m1m2 = `"a"/"b" = (-1)/5`    ...(1)

Now, required lines are perpendicular to these lines

∴ their slopes are `(-1)/"m"_1` and `1/"m"_2`

Since these lines are passing through the origin, their separate equations are

y = `(-1)/"m"_1 "x"` and y = `(-1)/"m"_2 "x"`

i.e. m1y = - x and m2y = - x

i.e. x + m1y  = 0 and x + m2y = 0

∴ their combined equation is

(x + m1y)(x + m2y) = 0

∴ x2 + (m1 + m2)xy + m1m2y2 = 0

∴ `"x"^2 + 4/5 "xy" - 1/5"y"^2 = 0`   ....[By(1)]

∴ 5x2 + 4xy - y2 = 0

shaalaa.com
Combined Equation of a Pair Lines
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Pair of Straight Lines - Miscellaneous Exercise 4 [पृष्ठ १३१]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Pair of Straight Lines
Miscellaneous Exercise 4 | Q 4.1 | पृष्ठ १३१

संबंधित प्रश्न

Find the combined equation of the following pair of lines passing through point (2, 3) and parallel to the coordinate axes.


Find the combined equation of the following pair of line passing through (−1, 2), one is parallel to x + 3y − 1 = 0 and other is perpendicular to 2x − 3y − 1 = 0


Find the separate equation of the line represented by the following equation:

3y2 + 7xy = 0 


Find the separate equation of the line represented by the following equation:

x2 + 2(cosec α)xy + y2 = 0


Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by following equation:

5x2 - 8xy + 3y2 = 0 


Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:

xy + y2 = 0 


Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:

3x2 -  4xy = 0 


Choose correct alternatives:

If the equation 3x2 – 8xy + qy2 + 2x + 14y + p = 1 represents a pair of perpendicular lines, then the values of p and q are respectively ______.


Choose correct alternatives:

The combined equation of the coordinate axes is


Choose correct alternatives:

If slope of one of the lines ax2 + 2hxy + by2 = 0 is 5 times the slope of the other, then 5h2 = ______


Find the joint equation of the line:

x - y = 0 and x + y = 0


Find the joint equation of the line passing through the origin and having inclinations 60° and 120°.


Find the joint equation of the line passing through (1, 2) and parallel to the coordinate axes


Find the joint equation of the line which are at a distance of 9 units from the Y-axis.


Show that the following equations represents a pair of line:

x2 + 2xy - y2 = 0


Show that the following equations represent a pair of line:

`"x"^2 - 2sqrt3"xy" - "y"^2 = 0`


Find the separate equation of the line represented by the following equation:

x2 - 4y2 = 0


Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by

2x2 - 3xy - 9y2 = 0


Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by

x2 + xy - y2 = 0


Find k, if the slope of one of the lines given by 3x2 - 4xy + ky2 = 0 is 1.


Find k, if one of the lines given by 3x2 - kxy + 5y2 = 0 is perpendicular to the line 5x + 3y = 0.


Find the combined equation of bisectors of angles between the lines represented by 5x2 + 6xy - y2 = 0.


Find an if the sum of the slope of lines represented by ax2 + 8xy + 5y2 = 0 is twice their product.


Show that the following equation represents a pair of line. Find the acute angle between them:

2x2 + xy - y2 + x + 4y - 3 = 0


Show that the following equation represents a pair of line. Find the acute angle between them:

(x - 3)2 + (x - 3)(y - 4) - 2(y - 4)2 = 0


Show that the combined equation of the pair of lines passing through the origin and each making an angle α with the line x + y = 0 is x2 + 2(sec 2α)xy + y2 = 0


The combined equation of the two lines passing through the origin, each making angle 45° and 135° with the positive X-axis is ______  


The combined equation of the lines through origin and perpendicular to the pair of lines 3x2 + 4xy − 5y2 = 0 is ______


The joint equation of pair of straight lines passing through origin and having slopes `(1 + sqrt2) and (1/(1 + sqrt2))` is ______.


The joint equation of pair of lines through the origin, each of which makes an angle of 60° with Y-axis, is ______ 


The equation of line passing through the midpoint of the line joining the points (-1, 3, -2) and (-5, 3, -6) and equally inclined to the axes is ______.


Write the joint equation of co-ordinate axes.


Find the combined equation of y-axis and the line through the origin having slope 3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×