हिंदी

The equation of line passing through the midpoint of the line joining the points (-1, 3, -2) and (-5, 3, -6) and equally inclined to the axes is ______. -

Advertisements
Advertisements

प्रश्न

The equation of line passing through the midpoint of the line joining the points (-1, 3, -2) and (-5, 3, -6) and equally inclined to the axes is ______.

विकल्प

  • x - 3 = y + 3 = z - 4

  • x + 3 = y - 3 = z + 4

  • x + 1 = y - 3 = z + 2

  • x + 5 = y + 3 = z + 6

MCQ
रिक्त स्थान भरें

उत्तर

The equation of line passing through the midpoint of the line joining the points (-1, 3, -2) and (-5, 3, -6) and equally inclined to the axes is x + 3 = y - 3 = z + 4.

Explanation:

Let A= (-1, 3, -2) and B = (-5, 3, -6)

Midpoint of AB = (-3, 3,-4)

Since the line is equally inclined to the axis

∴ d.r.s are 1, 1, 1.

∴ equation of the line is `(x+3)/1=(y-3)/1=(z+4)/1`

⇒ x + 3 = y - 3 = z + 4

shaalaa.com
Combined Equation of a Pair Lines
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×