हिंदी

Write the joint equation of co-ordinate axes. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Write the joint equation of co-ordinate axes.

योग

उत्तर

As we know that,

  • In the coordinate axes, on the x-axis, the value of y always stays constant and the value of x keeps changing.
  • Similarly, on the y-axis, the value of x stays constant and the value of y keeps changing.

Here,

Equation of coordinates,

for x-axis,

y = 0  `\implies` equation (1)

for y-axis,

x = 0  `\implies` equation (2)

now,

To get the combined equation we will multiply equations (1) and (2).

xy = 0

Hence the joint equation of coordinates axes is xy = 0

shaalaa.com
Combined Equation of a Pair Lines
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Official

संबंधित प्रश्न

Find the combined equation of the following pair of lines passing through point (2, 3) and parallel to the coordinate axes.


Find the separate equation of the line represented by the following equation:

3y2 + 7xy = 0 


Find the separate equation of the line represented by the following equation:

x2 - 4xy = 0 


Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:

xy + y2 = 0 


Choose correct alternatives:

If the equation 3x2 – 8xy + qy2 + 2x + 14y + p = 1 represents a pair of perpendicular lines, then the values of p and q are respectively ______.


The area of triangle formed by the lines x2 + 4xy + y2 = 0 and x - y - 4 = 0 is ______.


Choose correct alternatives:

The combined equation of the coordinate axes is


Choose correct alternatives:

If h2 = ab, then slopes of lines ax2 + 2hxy + by2 = 0 are in the ratio


Choose correct alternatives:

If slope of one of the lines ax2 + 2hxy + by2 = 0 is 5 times the slope of the other, then 5h2 = ______


Find the joint equation of the line:

x - y = 0 and x + y = 0


Find the joint equation of the line:

x + y - 3 = 0 and 2x + y - 1 = 0


Find the joint equation of the line passing through the origin and having inclinations 60° and 120°.


Find the joint equation of the line passing through (1, 2) and parallel to the coordinate axes


Find the joint equation of the line which are at a distance of 9 units from the Y-axis.


Find the joint equation of the line passing through the point (3, 2), one of which is parallel to the line x - 2y = 2, and other is perpendicular to the line y = 3.


Find the joint equation of the line passing through the origin and perpendicular to the lines x + 2y = 19 and 3x + y = 18


Show that the following equations represents a pair of line:

4x2 + 4xy + y2 = 0


Show that the following equations represent a pair of line:

x2 - y2 = 0


Show that the following equations represent a pair of line:

x2 + 7xy - 2y2 = 0


Show that the following equations represent a pair of line:

`"x"^2 - 2sqrt3"xy" - "y"^2 = 0`


Find the separate equation of the line represented by the following equation:

6x2 - 5xy - 6y2 = 0


Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by

x2 + 4xy - 5y2 = 0


Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by

2x2 - 3xy - 9y2 = 0


Find k, if the sum of the slopes of the lines given by x2 + kxy − 3y2 = 0 is equal to their product.


Find k, if the slope of one of the lines given by 3x2 - 4xy + ky2 = 0 is 1.


Find k, if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.


Show that the following equation represents a pair of line. Find the acute angle between them:

2x2 + xy - y2 + x + 4y - 3 = 0


Show that the following equation represents a pair of line. Find the acute angle between them:

(x - 3)2 + (x - 3)(y - 4) - 2(y - 4)2 = 0


Show that the combined equation of the pair of lines passing through the origin and each making an angle α with the line x + y = 0 is x2 + 2(sec 2α)xy + y2 = 0


If the line x + 2 = 0 coincides with one of the lines represented by the equation x2 + 2xy + 4y + k = 0, then prove that k = - 4. 


Find k if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.


Find the joint equation of the line passing through the origin and having slopes 1 + `sqrt3` and 1 - `sqrt3`


The combined equation of the lines through origin and perpendicular to the pair of lines 3x2 + 4xy − 5y2 = 0 is ______


The joint equation of pair of straight lines passing through origin and having slopes `(1 + sqrt2) and (1/(1 + sqrt2))` is ______.


The joint equation of the lines through the origin which forms two of the sides of the equilateral triangle having x = 2 as the third side is ______


The combined equation of the lines which pass through the origin and each of which makes an angle of 30° with the line 3x + 2y – 11 = 0 is ______.


The line 5x + y – 1 = 0 coincides with one of the lines given by 5x2 + xy – kx – 2y + 2 = 0 then the value of k is ______.


If `x^2/a + y^2/b + (2xy)/h` = 0 represents a pair of lines and slope of one line is twice the other, then find the value of ab : h2.


Combined equation of the lines bisecting the angles between the coordinate axes, is ______.


Find the joint equation of the pair of lines through the origin and perpendicular to the lines given by 2x2 + 7xy + 3y2 = 0


Find k, if one of the lines given by kx2 – 5xy – 3y2 = 0 is perpendicular to the line x – 2y + 3 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×