हिंदी

Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by x2 + xy - y2 = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by

x2 + xy - y2 = 0

योग

उत्तर

Comparing the equation x2 + xy - y2 = 0 with ax2 + 2hxy + by2 = 0, we get,

a = 1, 2h = 1, b = - 1

Let m1 and m2 be the slopes of the lines represented by x2 + xy - y2 = 0 

∴ m1 + m2 = `(-"2h")/"b" = (-1)/-1 = 1`  and  m1m2 = `"a"/"b" = 1/-1 = -1`    ...(1)

Now, required lines are perpendicular to these lines

∴ their slopes are `(-1)/"m"_1` and `- 1/"m"_2`

Since these lines are passing through the origin, their separate equations are

y = `(-1)/"m"_1 "x"` and y = `(-1)/"m"_2 "x"`

i.e. m1y = - x and m2y = - x

i.e. x + m1y  = 0 and x + m2y = 0

∴ their combined equation is

(x + m1y)(x + m2y) = 0

∴ x2 + (m1 + m2)xy + m1m2y2 = 0

∴ `"x"^2 + 1"xy" + (-1)"y"^2 = 0`   ....[By(1)]

∴ `"x"^2 + "xy" - "y"^2 = 0`

shaalaa.com
Combined Equation of a Pair Lines
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Pair of Straight Lines - Miscellaneous Exercise 4 [पृष्ठ १३१]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Pair of Straight Lines
Miscellaneous Exercise 4 | Q 4.3 | पृष्ठ १३१

संबंधित प्रश्न

Find the combined equation of the following pair of lines:

Passing through (2, 3) and perpendicular to the lines 3x + 2y – 1 = 0 and x – 3y + 2 = 0.


Find the separate equation of the line represented by the following equation:

5x2 – 9y2 = 0


Find the separate equation of the line represented by the following equation:

x2 - 4xy = 0 


Find the separate equation of the line represented by the following equation:

`3"x"^2 - 2sqrt3"xy" - 3"y"^2 = 0`


Find the separate equation of the line represented by the following equation:

x2 + 2(cosec α)xy + y2 = 0


Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:

xy + y2 = 0 


Choose correct alternatives:

Auxiliary equation of 2x2 + 3xy - 9y2 = 0 is


Choose correct alternatives:

If two lines ax2 + 2hxy + by2 = 0 make angles α and β with X-axis, then tan (α + β) = _____.


Choose correct alternatives:

If the equation 3x2 – 8xy + qy2 + 2x + 14y + p = 1 represents a pair of perpendicular lines, then the values of p and q are respectively ______.


Choose correct alternatives:

The combined equation of the coordinate axes is


Choose correct alternatives:

If slope of one of the lines ax2 + 2hxy + by2 = 0 is 5 times the slope of the other, then 5h2 = ______


Choose correct alternatives:

If distance between lines (x - 2y)2 + k(x - 2y) = 0 is 3 units, then k = ______.


Find the joint equation of the line passing through the origin and having inclinations 60° and 120°.


Find the joint equation of the line passing through (3, 2) and parallel to the lines x = 2 and y  = 3.


Find the joint equation of the line passing through the origin and perpendicular to the lines x + 2y = 19 and 3x + y = 18


Show that the following equations represents a pair of line:

4x2 + 4xy + y2 = 0


Show that the following equations represent a pair of line:

x2 - y2 = 0


Find the separate equation of the line represented by the following equation:

6x2 - 5xy - 6y2 = 0


Find k, if the slope of one of the lines given by 3x2 - 4xy + ky2 = 0 is 1.


Find the joint equation of the pair of lines through the origin and making an equilateral triangle with the line x = 3.


Find an if the sum of the slope of lines represented by ax2 + 8xy + 5y2 = 0 is twice their product.


If the line 4x - 5y = 0 coincides with one of the lines given by ax2 + 2hxy + by2 = 0, then show that 25a + 40h + 16b = 0


Show that the following equation represents a pair of line. Find the acute angle between them:

2x2 + xy - y2 + x + 4y - 3 = 0


Find the condition that the equation ay2 + bxy + ex + dy = 0 may represent a pair of lines. 


If the line x + 2 = 0 coincides with one of the lines represented by the equation x2 + 2xy + 4y + k = 0, then prove that k = - 4. 


Prove that the combined of the pair of lines passing through the origin and perpendicular to the lines ax2 + 2hxy + by2 = 0 is bx2 - 2hxy + ay2 = 0.


Find k if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.


Find the joint equation of the line passing through the origin and having slopes 1 + `sqrt3` and 1 - `sqrt3`


The equation of line passing through the midpoint of the line joining the points (-1, 3, -2) and (-5, 3, -6) and equally inclined to the axes is ______.


The joint equation of pair of lines having slopes 2 and 5 and passing through the origin is ______.


The combined equation of the lines which pass through the origin and each of which makes an angle of 30° with the line 3x + 2y – 11 = 0 is ______.


The line 5x + y – 1 = 0 coincides with one of the lines given by 5x2 + xy – kx – 2y + 2 = 0 then the value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×