Advertisements
Advertisements
प्रश्न
Find the condition that the equation ay2 + bxy + ex + dy = 0 may represent a pair of lines.
उत्तर
Comparing the equation ay2 + bxy + ex + dy = 0 with Ax2 + 2Hxy + By2 + 2Gx + 2Fy + C = 0, we get,
A = 0, H = `"b"/2`, B = a, G = `"e"/2`, F = `"d"/2`, C = 0
The given equation represents a pair of lines,
if `|("A","H","G"),("H","B","F"),("G","F","C")| = 0`
i.e. if `|(0,"b"/2,"e"/2),("b"/2,"a","d"/2),("e"/2,"d"/2, 0)| = 0`
i.e. if `0 - "b"/2(0 - "ed"/4) + "e"/2("bd"/4 - "ae"/2) = 0`
i.e. if `"bed"/8 + "bed"/8 - "ae"^2/4 = 0`
i.e. if bed - ae2 = 0
i.e. if e(bd - ae) = 0
i.e. if e = 0 or bd - ae = 0
i.e. if e = 0 or bd = ae
This is the required condition.
APPEARS IN
संबंधित प्रश्न
Find the combined equation of the following pair of lines passing through point (2, 3) and parallel to the coordinate axes.
Find the separate equation of the line represented by the following equation:
5x2 – 9y2 = 0
Find the separate equation of the line represented by the following equation:
x2 - 4xy = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
5x2 + 2xy - 3y2 = 0
Choose correct alternatives:
Auxiliary equation of 2x2 + 3xy - 9y2 = 0 is
If the slope of one of the two lines given by `"x"^2/"a" + "2xy"/"h" + "y"^2/"b" = 0` is twice that of the other, then ab : h2 = ______.
Choose correct alternatives:
The combined equation of the coordinate axes is
Find the joint equation of the line:
x - y = 0 and x + y = 0
Find the joint equation of the line passing through the point (3, 2), one of which is parallel to the line x - 2y = 2, and other is perpendicular to the line y = 3.
Find the joint equation of the line passing through (-1, 2) and perpendicular to the lines x + 2y + 3 = 0 and 3x - 4y - 5 = 0
Show that the following equations represents a pair of line:
x2 + 2xy - y2 = 0
Show that the following equations represent a pair of line:
`"x"^2 - 2sqrt3"xy" - "y"^2 = 0`
Find the separate equation of the line represented by the following equation:
2x2 + 2xy - y2 = 0
Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by
x2 + 4xy - 5y2 = 0
Find the joint equation of the pair of a line through the origin and perpendicular to the lines given by
2x2 - 3xy - 9y2 = 0
Find k, if the sum of the slopes of the lines given by 3x2 + kxy - y2 = 0 is zero.
Find k, if the slope of one of the lines given by 3x2 - 4xy + ky2 = 0 is 1.
Find k, if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.
Find the joint equation of the pair of lines through the origin and making an equilateral triangle with the line x = 3.
Find an if the sum of the slope of lines represented by ax2 + 8xy + 5y2 = 0 is twice their product.
If the line 4x - 5y = 0 coincides with one of the lines given by ax2 + 2hxy + by2 = 0, then show that 25a + 40h + 16b = 0
Show that the following equation represents a pair of line. Find the acute angle between them:
2x2 + xy - y2 + x + 4y - 3 = 0
Show that the following equation represents a pair of line. Find the acute angle between them:
(x - 3)2 + (x - 3)(y - 4) - 2(y - 4)2 = 0
If equation ax2 - y2 + 2y + c = 1 represents a pair of perpendicular lines, then find a and c.
Find the joint equation of the line passing through the origin and having slopes 1 + `sqrt3` and 1 - `sqrt3`
Show that the combined equation of pair of lines passing through the origin is a homogeneous equation of degree 2 in x and y. Hence find the combined equation of the lines 2x + 3y = 0 and x − 2y = 0
The equation of line passing through the midpoint of the line joining the points (-1, 3, -2) and (-5, 3, -6) and equally inclined to the axes is ______.
The joint equation of pair of lines having slopes `1+sqrt2` and `1-sqrt2` and passing through the origin is ______.
Write the separate equations of lines represented by the equation 5x2 – 9y2 = 0
The line 5x + y – 1 = 0 coincides with one of the lines given by 5x2 + xy – kx – 2y + 2 = 0 then the value of k is ______.
Write the joint equation of co-ordinate axes.
Find the joint equation of the pair of lines through the origin and perpendicular to the lines given by 2x2 + 7xy + 3y2 = 0
Find the combined equation of y-axis and the line through the origin having slope 3.
Find k, if one of the lines given by kx2 – 5xy – 3y2 = 0 is perpendicular to the line x – 2y + 3 = 0