Advertisements
Advertisements
प्रश्न
Find an if the sum of the slope of lines represented by ax2 + 8xy + 5y2 = 0 is twice their product.
उत्तर
Comparing the equation ax2 + 8xy + 5y2 = 0 with ax2 + 2hxy + by2 = 0,
we get, a = a, 2h = 8, b = 5
Let m1 and m2 be the slopes of the lines represented by ax2 + 8xy + 5y2 = 0.
∴ m1 + m2 = `(- 2"h")/"b" = -8/5`
and m1m2 = `"a"/"b" = "a"/5`
Now, (m1 + m2) = 2(m1m2)
`-8/5 = 2("a"/5)`
a = - 4
APPEARS IN
संबंधित प्रश्न
Find the combined equation of the following pair of line:
2x + y = 0 and 3x − y = 0
Find the separate equation of the line represented by the following equation:
3y2 + 7xy = 0
Find the separate equation of the line represented by the following equation:
`3"x"^2 - 2sqrt3"xy" - 3"y"^2 = 0`
Find the separate equation of the line represented by the following equation:
x2 + 2(cosec α)xy + y2 = 0
Find the separate equation of the line represented by the following equation:
x2 + 2xy tan α - y2 = 0
Choose correct alternatives:
Auxiliary equation of 2x2 + 3xy - 9y2 = 0 is
Choose correct alternatives:
The joint equation of the lines through the origin and perpendicular to the pair of lines 3x2 + 4xy – 5y2 = 0 is _______.
Choose correct alternatives:
The combined equation of the coordinate axes is
Choose correct alternatives:
If slope of one of the lines ax2 + 2hxy + by2 = 0 is 5 times the slope of the other, then 5h2 = ______
Choose correct alternatives:
If distance between lines (x - 2y)2 + k(x - 2y) = 0 is 3 units, then k = ______.
Find the joint equation of the line passing through the origin having slopes 2 and 3.
Find the joint equation of the line passing through the origin and having inclinations 60° and 120°.
Find the joint equation of the line passing through (3, 2) and parallel to the lines x = 2 and y = 3.
Find the joint equation of the line passing through the point (3, 2), one of which is parallel to the line x - 2y = 2, and other is perpendicular to the line y = 3.
Find the joint equation of the line passing through (-1, 2) and perpendicular to the lines x + 2y + 3 = 0 and 3x - 4y - 5 = 0
Show that the following equations represents a pair of line:
4x2 + 4xy + y2 = 0
Show that the following equations represent a pair of line:
`"x"^2 - 2sqrt3"xy" - "y"^2 = 0`
Find the separate equation of the line represented by the following equation:
6x2 - 5xy - 6y2 = 0
Find the separate equation of the line represented by the following equation:
3x2 - y2 = 0
Find the separate equation of the line represented by the following equation:
2x2 + 2xy - y2 = 0
Find k, if the slope of one of the lines given by 3x2 - 4xy + ky2 = 0 is 1.
Find k, if one of the lines given by 3x2 - kxy + 5y2 = 0 is perpendicular to the line 5x + 3y = 0.
Find k, if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.
Find k, if one of the lines given by 6x2 + kxy + y2 = 0 is 2x + y = 0.
Show that the following equation represents a pair of line. Find the acute angle between them:
2x2 + xy - y2 + x + 4y - 3 = 0
If equation ax2 - y2 + 2y + c = 1 represents a pair of perpendicular lines, then find a and c.
Find k if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.
Find the joint equation of the line passing through the origin and having slopes 1 + `sqrt3` and 1 - `sqrt3`
The line 5x + y – 1 = 0 coincides with one of the lines given by 5x2 + xy – kx – 2y + 2 = 0 then the value of k is ______.
Find the combined equation of y-axis and the line through the origin having slope 3.
Find k, if one of the lines given by kx2 – 5xy – 3y2 = 0 is perpendicular to the line x – 2y + 3 = 0