Advertisements
Advertisements
प्रश्न
The combined equation of the lines through origin and perpendicular to the pair of lines 3x2 + 4xy − 5y2 = 0 is ______
पर्याय
5x2 + 4xy − 3y2 = 0
3x2 + 4xy − 5y2 = 0
3x2 - 4xy + 5y2 = 0
5x2 + 4xy + 3y2 = 0
उत्तर
5x2 + 4xy − 3y2 = 0
संबंधित प्रश्न
Find the separate equation of the line represented by the following equation:
3y2 + 7xy = 0
Find the separate equation of the line represented by the following equation:
x2 - 4xy = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by following equation:
5x2 - 8xy + 3y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
xy + y2 = 0
Find the combined equation of the pair of a line passing through the origin and perpendicular to the line represented by the following equation:
3x2 - 4xy = 0
Choose correct alternatives:
Auxiliary equation of 2x2 + 3xy - 9y2 = 0 is
Choose correct alternatives:
If two lines ax2 + 2hxy + by2 = 0 make angles α and β with X-axis, then tan (α + β) = _____.
Choose correct alternatives:
If the equation 3x2 – 8xy + qy2 + 2x + 14y + p = 1 represents a pair of perpendicular lines, then the values of p and q are respectively ______.
Choose correct alternatives:
If slope of one of the lines ax2 + 2hxy + by2 = 0 is 5 times the slope of the other, then 5h2 = ______
Choose correct alternatives:
If distance between lines (x - 2y)2 + k(x - 2y) = 0 is 3 units, then k = ______.
Find the joint equation of the line:
x + y - 3 = 0 and 2x + y - 1 = 0
Find the joint equation of the line passing through the origin and having inclinations 60° and 120°.
Find the joint equation of the line passing through (1, 2) and parallel to the coordinate axes
Find the joint equation of the line which are at a distance of 9 units from the Y-axis.
Find the joint equation of the line passing through the origin and perpendicular to the lines x + 2y = 19 and 3x + y = 18
Show that the following equations represents a pair of line:
4x2 + 4xy + y2 = 0
Show that the following equations represent a pair of line:
`"x"^2 - 2sqrt3"xy" - "y"^2 = 0`
Find the separate equation of the line represented by the following equation:
2x2 + 2xy - y2 = 0
Find k, if the slope of one of the lines given by 3x2 + 4xy + ky2 = 0 is three times the other.
Find an if the sum of the slope of lines represented by ax2 + 8xy + 5y2 = 0 is twice their product.
If the line 4x - 5y = 0 coincides with one of the lines given by ax2 + 2hxy + by2 = 0, then show that 25a + 40h + 16b = 0
Show that the following equation represents a pair of line. Find the acute angle between them:
2x2 + xy - y2 + x + 4y - 3 = 0
Show that the following equation represents a pair of line. Find the acute angle between them:
(x - 3)2 + (x - 3)(y - 4) - 2(y - 4)2 = 0
Find the condition that the equation ay2 + bxy + ex + dy = 0 may represent a pair of lines.
Show that the combined equation of pair of lines passing through the origin is a homogeneous equation of degree 2 in x and y. Hence find the combined equation of the lines 2x + 3y = 0 and x − 2y = 0
The joint equation of pair of straight lines passing through origin and having slopes `(1 + sqrt2) and (1/(1 + sqrt2))` is ______.
The joint equation of pair of lines through the origin, each of which makes an angle of 60° with Y-axis, is ______
The joint equation of pair of lines having slopes `1+sqrt2` and `1-sqrt2` and passing through the origin is ______.
The combined equation of the lines which pass through the origin and each of which makes an angle of 30° with the line 3x + 2y – 11 = 0 is ______.
The line 5x + y – 1 = 0 coincides with one of the lines given by 5x2 + xy – kx – 2y + 2 = 0 then the value of k is ______.
Write the joint equation of co-ordinate axes.
Find the combined equation of the pair of lines passing through the origin and perpendicular to the lines represented by 3x2 + 2xy – y2 = 0.
Find the joint equation of the pair of lines through the origin and perpendicular to the lines given by 2x2 + 7xy + 3y2 = 0