Advertisements
Advertisements
प्रश्न
Answer the following question:
If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find B + C – A
उत्तर
A = diag [2 –3 –5]
∴ A = `[(2, 0, 0),(0, -3, 0),(0, 0, -5)]`
B = diag [4 –6 –3]
∴ B = `[(4, 0, 0),(0, -6, 0),(0, 0, -3)]`
C = diag [–3 4 1]
∴ C = `[(-3, 0, 0),(0, 4, 0),(0, 0, 1)]`
B + C – A = `[(4, 0, 0),(0, -6, 0),(0, 0, -3)] + [(-3, 0, 0),(0, 4, 0),(0, 0, 1)] - [(2,0, 0),(0, -3, 0),(0, 0, -5)]`
= `[(4 - 3 - 2, 0, 0),(0, -6 + 4 + 3, 0),(0, 0, -3 + 1 + 5)]`
= `[(-1, 0, 0),(0, 1, 0),(0, 0, 3)]`
= diag [–1, 1, 3]
APPEARS IN
संबंधित प्रश्न
If for any 2 x 2 square matrix A, `A("adj" "A") = [(8,0), (0,8)]`, then write the value of |A|
Find the value of x, y, and z from the following equation:
`[(4,3),(x,5)] = [(y,z),(1,5)]`
Find the value of a, b, c, and d from the equation:
`[(a-b, 2a+c),(2a-b, 3x+d)] = [(-1,5),(0,13)]`
Find the matrix X so that X`[(1,2,3),(4,5,6)]= [(-7,-8,-9),(2,4,6)]`
If A = `[(alpha, beta),(gamma, -alpha)]` is such that A2 = I then ______.
Show that a matrix A = `1/2[(sqrt2,-isqrt2,0),(isqrt2,-sqrt2,0),(0,0,2)]` is unitary.
If 𝒙 = r cos θ and y= r sin θ prove that JJ-1=1.
Find the non-singular matrices P & Q such that PAQ is in normal form where`[(1,2,3,4),(2,1,4,3),(3,0,5,-10)]`
Show that (A + A') is symmetric matrix, if `A = ((2,4),(3,5))`
If A and B are square matrices of the same order 3, such that ∣A∣ = 2 and AB = 2I, write the value of ∣B∣.
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(3, -2, 4),(0, 0, -5),(0, 0, 0)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
Identify the following matrix is singular or non-singular?
`[(5, 0, 5),(1, 99, 100),(6, 99, 105)]`
Identify the following matrix is singular or non-singular?
`[(7, 5),(-4, 7)]`
Find k if the following matrix is singular:
`[(4, 3, 1),(7, "k", 1),(10, 9, 1)]`
Find x, y, z If `[(0, -5"i", x),(y, 0, z),(3/2, -sqrt(2), 0)]` is a skew symmetric matrix.
The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:
`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`
Answer the following question:
If A = `[(1, 2),(3, 2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, -3)]`, show that AB is singular.
Answer the following question:
If A = `[(1, omega),(omega^2, 1)]`, B = `[(omega^2, 1),(1, omega)]`, where ω is a complex cube root of unity, then show that AB + BA + A −2B is a null matrix
If A = `[(6, 0),("p", "q")]` is a scalar matrix, then the values of p and q are ______ respectively.
State whether the following statement is True or False:
If A is non singular, then |A| = 0
The matrix A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` is a ______.
If A = `[(3, -4),(1, 1),(2, 0)]` and B = `[(2, 1, 2),(1, 2, 4)]`, then verify (BA)2 ≠ B2A2
Given A = `[(2, 4, 0),(3, 9, 6)]` and B = `[(1, 4),(2, 8),(1, 3)]` is (AB)′ = B′A′?
If A = `[(0,0,0),(0,0,0),(0,1,0)]` then A is ____________.
A square matrix A = [aij]nxn is called a diagonal matrix if aij = 0 for ____________.
If the matrix A `= [(5,2,"x"),("y",2,-3),(4, "t",-7)]` is a symmetric matrix, then find the value of x, y and t respectively.
If a matrix A is both symmetric and skew-symmetric, then ____________.
The matrix A `=[(0,1),(1,0)]` is a ____________.
A square matrix in which elements in the diagonal are all 1 and rest are all zero is called an
A = `[a_(ij)]_(m xx n)` is a square matrix, if
If 'A' is square matrix, such that A2 = A, then (7 + A)3 = 7A is equal to
If A and B are square matrices of order 3 × 3 and |A| = –1, |B| = 3, then |3AB| equals ______.
If A = `[(0, -tan θ/2),(tan θ/2, 0)]` and (I2 + A) (I2 – A)–1 = `[(a, -b),(b, a)]` then 13(a2 + b2) is equal to ______.
If `A = [(1,-1,2),(0,-1,3)], B = [(-2,1),(3,-1),(0,2)],` then AB is a singular matrix.