Advertisements
Advertisements
प्रश्न
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
उत्तर
\[\text{ We have, }A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B = \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
\[ \therefore AB = \begin{bmatrix}18 & 22 \\ 43 & 52\end{bmatrix}\]
\[\left| AB \right| = - 10\]
\[\text{Since, }\left| AB \right| \neq 0\]
\[\text{Hence, AB is invertible . Let } C_{ij}\text{ be the cofactor of }a_{in}\text{ in AB = }\left[ a_{ij} \right]\]
\[ C_{11} = 52 , C_{12} = - 43, C_{21} = - 22\text{ and }C_{22} = 18\]
\[adj\left( AB \right) = \begin{bmatrix}52 & - 43 \\ - 22 & 18\end{bmatrix}^T = \begin{bmatrix}52 & - 22 \\ - 43 & 18\end{bmatrix}\]
\[ \therefore \left( AB \right)^{- 1} = - \frac{1}{10}\begin{bmatrix}52 & - 22 \\ - 43 & 18\end{bmatrix} . . . \left( 1 \right)\]
\[\text{ Now, }B = \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
\[\left| B \right| = - 10\]
\[\text{ Since, }\left| B \right| \neq 0\]
\[\text{Hence, B is invertible . Let }C_{ij}\text{ be the cofactor of } a_{in}\text{ in B = }\left[ a_{ij} \right]\]
\[ C_{11} = 2 , C_{12} = - 3, C_{21} = - 6\text{ and }C_{22} = 4\]
\[adjB = \begin{bmatrix}2 & - 3 \\ - 6 & 4\end{bmatrix}^T = \begin{bmatrix}2 & - 6 \\ - 3 & 4\end{bmatrix}\]
\[ \therefore B^{- 1} = - \frac{1}{10}\begin{bmatrix}2 & - 6 \\ - 3 & 4\end{bmatrix}\]
\[\left| A \right| = 1\]
\[\text{Since, }\left| A \right| \neq 0\]
\[\text{ Hence, A is invertible . Let }C_{ij}\text{ be the cofactor of } a_{in}\text{ in A = }\left[ a_{ij} \right]\]
\[ C_{11} = 5 , C_{12} = - 7, C_{21} = - 2\text{ and }C_{22} = 3\]
\[adjA = \begin{bmatrix}5 & - 7 \\ - 2 & 3\end{bmatrix}^T = \begin{bmatrix}5 & - 2 \\ - 7 & 3\end{bmatrix}\]
\[ \therefore A^{- 1} = \begin{bmatrix}5 & - 2 \\ - 7 & 3\end{bmatrix}\]
\[\text{ Now, }B^{- 1} A^{- 1} = - \frac{1}{10}\begin{bmatrix}52 & - 22 \\ - 43 & 18\end{bmatrix} . . . \left( 2 \right)\]
\[\text{From eq . }\left( 1 \right)\text{ and }\left( 2 \right),\text{ we have}\]
\[ \left( AB \right)^{- 1} = B^{- 1} A^{- 1} \]
Hence verified .
APPEARS IN
संबंधित प्रश्न
Find the adjoint of the matrices.
`[(1,2),(3,4)]`
Find the inverse of the matrices (if it exists).
`[(-1,5),(-3,2)]`
Find the inverse of the matrices (if it exists).
`[(1,2,3),(0,2,4),(0,0,5)]`
Find the inverse of the matrices (if it exists).
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(0, cos alpha, sin alpha),(0, sin alpha, -cos alpha)]`
If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.
Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that
- [adj A]–1 = adj (A–1)
- (A–1)–1 = A
For the matrix
Find the inverse of the following matrix:
If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.
If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that
If \[A = \begin{bmatrix}4 & 3 \\ 2 & 5\end{bmatrix}\], find x and y such that
For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that
Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\] satisfies the equation, \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\] and hence find A−1.
If \[A = \begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\] , show that \[A^{- 1} = A^3\]
Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]
Find the matrix X satisfying the equation
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}7 & 1 \\ 4 & - 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]
If adj \[A = \begin{bmatrix}2 & 3 \\ 4 & - 1\end{bmatrix}\text{ and adj }B = \begin{bmatrix}1 & - 2 \\ - 3 & 1\end{bmatrix}\]
If A is an invertible matrix such that |A−1| = 2, find the value of |A|.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write \[A^{- 1}\] in terms of A.
If A, B are two n × n non-singular matrices, then __________ .
For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .
If A5 = O such that \[A^n \neq I\text{ for }1 \leq n \leq 4,\text{ then }\left( I - A \right)^{- 1}\] equals ________ .
If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`
If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.
|adj. A| = |A|2, where A is a square matrix of order two.
If A, B be two square matrices such that |AB| = O, then ____________.
For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:
Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.