Advertisements
Advertisements
प्रश्न
Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\] satisfies the equation, \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.
उत्तर
\[\text{ We have, }A = \begin{bmatrix} 1 & 0 &- 2\\ - 2 & - 1 & 2\\ 3 & 4 & 1 \end{bmatrix} \]
\[ \Rightarrow \left| A \right| = \begin{vmatrix}| 1 & 0 &- 2\\ - 2 & - 1 & 2\\ 3 & 4 & 1 \end{vmatrix} = 1\left( - 9 \right) + 0 - 2\left( - 8 \right) = - 9 + 16 = 7 \]
\[\text{ Since, }\left| A \right| \neq 0\]
\[\text{ Hence, }A^{- 1}\text{ exists .} \]
Now,
\[ A^2 = \begin{bmatrix} 1 & 0 & - 2\\ - 2 & - 1 & 2\\ 3 & 4 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 &- 2\\ - 2 & - 1 & 2\\ 3 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 + 0 - 6 & 0 + 0 - 8 & - 2 + 0 - 2\\ - 2 + 2 + 6 & 0 + 1 + 8 & 4 - 2 + 2\\ 3 - 8 + 3 & 0 - 4 + 4 & - 6 + 8 + 1 \end{bmatrix} = \begin{bmatrix} - 5 & - 8 & - 4\\ 6 & 9 & 4\\ - 2 & 0 & 3 \end{bmatrix}\]
\[ A^3 = A^2 . A = \begin{bmatrix} - 5 & - 8 & - 4\\ 6 & 9 & 4\\ - 2 & 0 & 3 \end{bmatrix}\begin{bmatrix} 1 & 0 & - 2\\ - 2 & - 1 & 2\\ 3 & 4 & 1 \end{bmatrix} = \begin{bmatrix} - 5 + 16 - 12 & 0 + 8 - 16 & 10 - 16 - 4\\ 6 - 18 + 12 & 0 - 9 + 16 & - 12 + 18 + 4\\ - 2 + 0 + 9 & 0 + 0 + 12 & 4 + 0 + 3 \end{bmatrix} = \begin{bmatrix} - 1 & - 8 & - 10\\ 0 & 7 & 10\\ 7 & 12 & 7 \end{bmatrix} \]
\[\text{ Now, }A^3 - A^2 - 3A - I_3 = \begin{bmatrix} - 1 & - 8 & - 10\\ 0 & 7 & 10\\ 7 & 12 & 7 \end{bmatrix} - \begin{bmatrix} - 5 & - 8 & - 4\\ 6 & 9 & 4\\ - 2 & 0 & 3 \end{bmatrix} - 3\begin{bmatrix} 1 & 0 & - 2\\ - 2 & - 1 & 2\\ 3 & 4 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \\ = \begin{bmatrix} - 1 + 5 - 3 - 1 & - 8 + 8 + 0 + 0 & - 10 + 4 + 6 - 0\\0 - 6 + 6 - 0 & 7 - 9 + 3 - 1 & 10 - 4 - 6 - 0\\ 7 + 2 - 9 - 0 & 12 + 0 - 12 - 0 & 7 - 3 - 3 - 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} = O\]
Hence proved .
\[\text{ Now,} A^3 - A^2 - 3A - I_3 = O (\text{ Null matrix })\]
\[ \Rightarrow A^{- 1} \left( A^3 - A^2 - 3A - I_3 \right) = A^{- 1} O (\text{ Pre - multiplying by A}^{- 1} )\]
\[ \Rightarrow A^2 - A^1 - 3 I_3 = A^{- 1} \]
\[ \Rightarrow \begin{bmatrix} - 5 & - 8 & - 4\\ 6 & 9 & 4\\ - 2 & 0 & 3 \end{bmatrix} - \begin{bmatrix} 1 & 0 & - 2\\ - 2 & - 1 & 2\\ 3 & 4 & 1 \end{bmatrix} - 3\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} = A^{- 1} \]
\[ \Rightarrow \begin{bmatrix} - 5 - 1 - 3 & - 8 - 0 - 0 & - 4 + 2 + 0\\ 6 + 2 + 0 & 9 + 1 - 3 & 4 - 2\\- 2 - 3 - 0 & 0 - 4 - 0 & 3 - 1 - 3 \end{bmatrix} = \begin{bmatrix} - 9 & - 8 & - 2\\ 8 & 7 &2\\ - 5 & - 4 & - 1 \end{bmatrix} = A^{- 1} \]
\[ \Rightarrow A^{- 1} = \begin{bmatrix} - 9 & - 8 & - 2\\ 8 & 7 & 2\\ - 5 & - 4 & - 1 \end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. School A wants to award Rs x each, Rs y each and Rs z each for the three respective values to 3, 2 and 1 students, respectively with a total award money of Rs 1,600. School B wants to spend Rs 2,300 to award 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is Rs 900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for an award.
Find the adjoint of the matrices.
`[(1,-1,2),(2,3,5),(-2,0,1)]`
Find the inverse of the matrices (if it exists).
`[(2,-2),(4,3)]`
Find the inverse of the matrices (if it exists).
`[(1,0,0),(0, cos alpha, sin alpha),(0, sin alpha, -cos alpha)]`
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Compute the adjoint of the following matrix:
Verify that (adj A) A = |A| I = A (adj A) for the above matrix.
Find A (adj A) for the matrix \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]
Find the inverse of the following matrix:
Find the inverse of the following matrix:
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]
If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\] so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.
Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.
Solve the matrix equation \[\begin{bmatrix}5 & 4 \\ 1 & 1\end{bmatrix}X = \begin{bmatrix}1 & - 2 \\ 1 & 3\end{bmatrix}\], where X is a 2 × 2 matrix.
Find the matrix X satisfying the matrix equation \[X\begin{bmatrix}5 & 3 \\ - 1 & - 2\end{bmatrix} = \begin{bmatrix}14 & 7 \\ 7 & 7\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}5 & 2 \\ 2 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]
If A is a square matrix, then write the matrix adj (AT) − (adj A)T.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = k A,\] then find the value of k.
If \[A = \begin{bmatrix}3 & 1 \\ 2 & - 3\end{bmatrix}\], then find |adj A|.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write \[A^{- 1}\] in terms of A.
If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .
If A and B are invertible matrices, which of the following statement is not correct.
If \[A = \begin{bmatrix}1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2\end{bmatrix},\text{ then aI + bA + 2 }A^2\] equals ____________ .
If A is an invertible matrix, then det (A−1) is equal to ____________ .
If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3
A square matrix A is invertible if det A is equal to ____________.
Find the adjoint of the matrix A `= [(1,2),(3,4)].`
Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.
For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?
If A is a square matrix of order 3 and |A| = 5, then |adj A| = ______.
A furniture factory uses three types of wood namely, teakwood, rosewood and satinwood for manufacturing three types of furniture, that are, table, chair and cot.
The wood requirements (in tonnes) for each type of furniture are given below:
Table | Chair | Cot | |
Teakwood | 2 | 3 | 4 |
Rosewood | 1 | 1 | 2 |
Satinwood | 3 | 2 | 1 |
It is found that 29 tonnes of teakwood, 13 tonnes of rosewood and 16 tonnes of satinwood are available to make all three types of furniture.
Using the above information, answer the following questions:
- Express the data given in the table above in the form of a set of simultaneous equations.
- Solve the set of simultaneous equations formed in subpart (i) by matrix method.
- Hence, find the number of table(s), chair(s) and cot(s) produced.