मराठी

Find the inverse of the matrices (if it exists). [2134-10-721] - Mathematics

Advertisements
Advertisements

प्रश्न

Find the inverse of the matrices (if it exists).

`[(2,1,3),(4,-1,0),(-7,2,1)]`

बेरीज

उत्तर

A = `[(2,1,3),(4,-1,0),(-7,2,1)]`

So, adj A `= [(A_11,A_21,A_31),(A_12,A_22,A_32),(A_13,A_23,A_33)]`

`= [(-1,5,3),(-4,23,12),(1,-11,-6)]`

`A^-1` = 2(-1 - 0) - 1(4 - 0) + 3 (8 - 7)

`= -3 ne 0 -> A^-1`

`C_11 = (-1)^(1+1) |(1,0), (2,1)| = -1`

`C12 = (-1)^(1+2) |(4,0), (-7,1)| = -4`

`C_13 = (-1)^(1+3)|(4,-1),(-7,2)| =8 - 7 = 1`

`C_21 = (-1)^(2+1) |(1,3), (2,1)| = -(1-6) = 5`

`C_22 = (-1)^(2+2) |(2,3), (-7,1)| = 2+21 = 23`

`C_23 = (-1)^(2+3) |(2,1), (-7,2)| = -(4+7) = -11`

`C_31 = (-1)^(3+1) |(1,3), (-1,0)| = 2`

`C_32 = (-1)^(3+2) |(2,3), (4,0)| = 12`

`C_33 = (-1)^(3+3)|(2,1), (4,-1)| = -6`

`A^-1 = 1/abs A (adjA) = 1/abs A [(A_11,A_21,A_31),(A_12,A_22,A_32),(A_13,A_23,A_33)]`

`= 1/-3 [(-1,5,3),(-4,23,12),(1,-11,-6)]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Determinants - Exercise 4.5 [पृष्ठ १३२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 4 Determinants
Exercise 4.5 | Q 9 | पृष्ठ १३२

संबंधित प्रश्‍न

Verify A (adj A) = (adj A) A = |A|I.

`[(2,3),(-4,-6)]`


Find the inverse of the matrices (if it exists).

`[(1,-1,2),(0,2,-3),(3,-2,4)]`


If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]`  find  `(AB)^(-1)`


Compute the adjoint of the following matrix:

\[\begin{bmatrix}1 & 2 & 5 \\ 2 & 3 & 1 \\ - 1 & 1 & 1\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.


Find the inverse of the following matrix:

\[\begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\]

Find the inverse of the following matrix and verify that \[A^{- 1} A = I_3\]

\[\begin{bmatrix}2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]

If \[A = \begin{bmatrix}4 & 5 \\ 2 & 1\end{bmatrix}\] , then show that \[A - 3I = 2 \left( I + 3 A^{- 1} \right) .\]


If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that 

\[A^2 - 5A + 7I = O\].  Hence, find A−1.

Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\]  satisfies the equation,  \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.


If \[A = \begin{bmatrix}2 & - 1 & 1 \\ - 1 & 2 & - 1 \\ 1 & - 1 & 2\end{bmatrix}\].
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\]  and hence find A−1.

Find the matrix X satisfying the equation 

\[\begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix} X \begin{bmatrix}5 & 3 \\ 3 & 2\end{bmatrix} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} .\]

Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & - 3 & 4 \\ 2 & - 3 & 4 \\ 0 & - 1 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 2 & 0 \\ 2 & 3 & - 1 \\ 1 & - 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & - 1 & 3 \\ 1 & 2 & 4 \\ 3 & 1 & 1\end{bmatrix}\]


If A is a square matrix, then write the matrix adj (AT) − (adj A)T.


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] , write  \[A^{- 1}\] in terms of A.


If A is an invertible matrix, then which of the following is not true ?


If \[A = \begin{bmatrix}3 & 4 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}- 2 & - 2 \\ 0 & - 1\end{bmatrix},\text{ then }\left( A + B \right)^{- 1} =\]


If \[A = \begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\] , then the value of |adj A| is _____________ .


If \[A = \begin{bmatrix}1 & 2 & - 1 \\ - 1 & 1 & 2 \\ 2 & - 1 & 1\end{bmatrix}\] , then ded (adj (adj A)) is __________ .


For any 2 × 2 matrix, if \[A \left( adj A \right) = \begin{bmatrix}10 & 0 \\ 0 & 10\end{bmatrix}\] , then |A| is equal to ______ .


If for the matrix A, A3 = I, then A−1 = _____________ .


For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .


If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is _____________ .


If A and B are invertible matrices, which of the following statement is not correct.


Let \[A = \begin{bmatrix}1 & 2 \\ 3 & - 5\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\] and X be a matrix such that A = BX, then X is equal to _____________ .


If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\]  be such that \[A^{- 1} = kA\], then k equals ___________ .


If \[\begin{bmatrix}1 & - \tan \theta \\ \tan \theta & 1\end{bmatrix} \begin{bmatrix}1 & \tan \theta \\ - \tan \theta & 1\end{bmatrix} - 1 = \begin{bmatrix}a & - b \\ b & a\end{bmatrix}\], then _______________ .


If A is an invertible matrix, then det (A1) is equal to ____________ .


If x, y, z are non-zero real numbers, then the inverse of the matrix \[A = \begin{bmatrix}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{bmatrix}\], is _____________ .

If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`


If A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` then x = 1, y = –1.


`("aA")^-1 = 1/"a"  "A"^-1`, where a is any real number and A is a square matrix.


For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:


If for a square matrix A, A2 – A + I = 0, then A–1 equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×