Advertisements
Advertisements
प्रश्न
Find the inverse of the following matrix.
उत्तर
\[F = \begin{bmatrix}0 & 0 & - 1 \\ 3 & 4 & 5 \\ - 2 & - 4 & - 7\end{bmatrix}\]
Now,
\[ C_{11} = \begin{vmatrix}4 & 5 \\ - 4 & - 7\end{vmatrix} = - 8, C_{12} = - \begin{vmatrix}3 & 5 \\ - 2 & - 7\end{vmatrix} = 11\text{ and }C_{13} = \begin{vmatrix}3 & 4 \\ - 2 & - 4\end{vmatrix} = - 4\]
\[ C_{21} = - \begin{vmatrix}0 & - 1 \\ - 4 & - 7\end{vmatrix} = 4, C_{22} = \begin{vmatrix}0 & - 1 \\ - 2 & - 7\end{vmatrix} = - 2\text{ and }C_{23} = - \begin{vmatrix}0 & 0 \\ - 2 & - 4\end{vmatrix} = 0\]
\[ C_{31} = \begin{vmatrix}0 & - 1 \\ 4 & 5\end{vmatrix} = 4, C_{32} = - \begin{vmatrix}0 & - 1 \\ 3 & 5\end{vmatrix} = - 3\text{ and }C_{33} = \begin{vmatrix}0 & 0 \\ 3 & 4\end{vmatrix} = 0\]
\[adjF = \begin{bmatrix}- 8 & 11 & - 4 \\ 4 & - 2 & 0 \\ 4 & - 3 & 0\end{bmatrix}^T = \begin{bmatrix}- 8 & 4 & 4 \\ 11 & - 2 & - 3 \\ - 4 & 0 & 0\end{bmatrix}\]
\[\text{ and }\left| F \right| = 4\]
\[ \therefore F^{- 1} = \frac{1}{4}\begin{bmatrix}- 8 & 4 & 4 \\ 11 & - 2 & - 3 \\ - 4 & 0 & 0\end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
Verify A (adj A) = (adj A) A = |A|I.
`[(2,3),(-4,-6)]`
Verify A (adj A) = (adj A) A = |A|I.
`[(1,-1,2),(3,0,-2),(1,0,3)]`
Let `A =[(3,7),(2,5)] and B = [(6,8),(7,9)]`. Verify that `(AB)^(-1) = B^(-1)A^(-1).`
If A = `[(3,1),(-1,2)]` show that A2 – 5A + 7I = O. Hence, find A–1.
For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.
Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that
- [adj A]–1 = adj (A–1)
- (A–1)–1 = A
If x, y, z are nonzero real numbers, then the inverse of matrix A = `[(x,0,0),(0,y,0),(0,0,z)]` is ______.
Find the adjoint of the following matrix:
\[\begin{bmatrix}- 3 & 5 \\ 2 & 4\end{bmatrix}\]
Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]
Find A (adj A) for the matrix \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]
Find the inverse of the following matrix:
Find the inverse of the following matrix:
Find the inverse of the following matrix.
Find the inverse of the following matrix.
Show that the matrix, \[A = \begin{bmatrix}1 & 0 & - 2 \\ - 2 & - 1 & 2 \\ 3 & 4 & 1\end{bmatrix}\] satisfies the equation, \[A^3 - A^2 - 3A - I_3 = O\] . Hence, find A−1.
prove that \[A^{- 1} = A^3\]
Find the matrix X satisfying the equation
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}- 1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse of the matrix \[\begin{bmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]
If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.
If \[A = \begin{bmatrix}3 & 1 \\ 2 & - 3\end{bmatrix}\], then find |adj A|.
If A is a singular matrix, then adj A is ______.
If \[A^2 - A + I = 0\], then the inverse of A is __________ .
If A and B are invertible matrices, which of the following statement is not correct.
If \[A = \begin{bmatrix}2 & 3 \\ 5 & - 2\end{bmatrix}\] be such that \[A^{- 1} = kA\], then k equals ___________ .
If \[A = \begin{bmatrix}2 & - 3 & 5 \\ 3 & 2 & - 4 \\ 1 & 1 & - 2\end{bmatrix}\], find A−1 and hence solve the system of linear equations 2x − 3y + 5z = 11, 3x + 2y − 4z = −5, x + y + 2z = −3
Using matrix method, solve the following system of equations:
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7
If A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, ten A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`
`("aA")^-1 = 1/"a" "A"^-1`, where a is any real number and A is a square matrix.
|adj. A| = |A|2, where A is a square matrix of order two.
If A, B be two square matrices such that |AB| = O, then ____________.
Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.