मराठी

Find the Inverse of the Following Matrix. ⎡ ⎢ ⎣ 1 0 0 0 Cos α Sin α 0 Sin α − Cos α ⎤ ⎥ ⎦ - Mathematics

Advertisements
Advertisements

प्रश्न

Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & - \cos \alpha\end{bmatrix}\]

उत्तर

\[G = \begin{bmatrix}1 & 0 & 0 \\ 0 & \cos\alpha & \sin\alpha \\ 0 & \sin\alpha & - \cos\alpha\end{bmatrix}\]
Now,
\[ C_{11} = \begin{vmatrix}\cos\alpha & \sin\alpha \\ \sin\alpha & - \cos\alpha\end{vmatrix} = - 1, C_{12} = - \begin{vmatrix}0 & \sin\alpha \\ 0 & - \cos\alpha\end{vmatrix} = 0\text{ and }C_{13} = \begin{vmatrix}0 & \cos\alpha \\ 0 & \sin\alpha\end{vmatrix} = 0\]
\[ C_{21} = - \begin{vmatrix}0 & 0 \\ \sin\alpha & - \cos\alpha\end{vmatrix} = 0, C_{22} = \begin{vmatrix}1 & 0 \\ 0 & - \cos\alpha\end{vmatrix} = - \cos\alpha\text{ and }C_{23} = - \begin{vmatrix}1 & 0 \\ 0 & \sin\alpha\end{vmatrix} = - \sin\alpha\]
\[ C_{31} = \begin{vmatrix}0 & 0 \\ \cos\alpha & \sin\alpha\end{vmatrix} = 0, C_{32} = - \begin{vmatrix}1 & 0 \\ 0 & \sin\alpha\end{vmatrix} = - \sin\alpha\text{ and }C_{33} = \begin{vmatrix}1 & 0 \\ 0 & \cos\alpha\end{vmatrix} = \cos\alpha\]
\[adjF = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - \cos\alpha & - \sin\alpha \\ 0 & - \sin\alpha & \cos\alpha\end{bmatrix}^T = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - \cos\alpha & - \sin\alpha \\ 0 & - \sin\alpha & \cos\alpha\end{bmatrix}\]
\[and \left| F \right| = - 1\]
\[ \therefore F^{- 1} = - 1\begin{bmatrix}- 1 & 0 & 0 \\ 0 & - \cos\alpha & - \sin\alpha \\ 0 & - \sin\alpha & \cos\alpha\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ 0 & \cos\alpha & \sin\alpha \\ 0 & \sin\alpha & - \cos\alpha\end{bmatrix}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Adjoint and Inverse of a Matrix - Exercise 7.1 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 7 Adjoint and Inverse of a Matrix
Exercise 7.1 | Q 8.7 | पृष्ठ २३

संबंधित प्रश्‍न

Find the adjoint of the matrices.

`[(1,-1,2),(2,3,5),(-2,0,1)]`


Find the inverse of the matrices (if it exists).

`[(1,2,3),(0,2,4),(0,0,5)]`


For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.


For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.


If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1


If A is an invertible matrix of order 2, then det (A−1) is equal to ______.


Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that

  1. [adj A]–1 = adj (A–1)
  2. (A–1)–1 = A

Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.


If  \[A = \begin{bmatrix}- 4 & - 3 & - 3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{bmatrix}\], show that adj A = A.


If \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] , show that adj A = 3AT.


Find the inverse of the following matrix:

\[\begin{bmatrix}\cos \theta & \sin \theta \\ - \sin \theta & \cos \theta\end{bmatrix}\]

For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]


For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]


Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]


If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that 

\[A^2 - 5A + 7I = O\].  Hence, find A−1.

If  \[A = \begin{bmatrix}4 & 3 \\ 2 & 5\end{bmatrix}\], find x and y such that 

\[A^2 = xA + yI = O\] . Hence, evaluate A−1.

If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\]  so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.


Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.


If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that  \[A^2 = A^{- 1} .\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]


Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]


If \[A = \begin{bmatrix}3 & 1 \\ 2 & - 3\end{bmatrix}\], then find |adj A|.


If A is an invertible matrix, then which of the following is not true ?


If A is an invertible matrix of order 3, then which of the following is not true ?


If A, B are two n × n non-singular matrices, then __________ .


If for the matrix A, A3 = I, then A−1 = _____________ .


If \[A = \frac{1}{3}\begin{bmatrix}1 & 1 & 2 \\ 2 & 1 & - 2 \\ x & 2 & y\end{bmatrix}\] is orthogonal, then x + y =

(a) 3
(b) 0
(c) − 3
(d) 1


If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .


If A is an invertible matrix, then det (A1) is equal to ____________ .


If x, y, z are non-zero real numbers, then the inverse of the matrix \[A = \begin{bmatrix}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{bmatrix}\], is _____________ .

Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.


For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?


For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×