Advertisements
Advertisements
प्रश्न
Find the inverse of the following matrix.
उत्तर
\[G = \begin{bmatrix}1 & 0 & 0 \\ 0 & \cos\alpha & \sin\alpha \\ 0 & \sin\alpha & - \cos\alpha\end{bmatrix}\]
Now,
\[ C_{11} = \begin{vmatrix}\cos\alpha & \sin\alpha \\ \sin\alpha & - \cos\alpha\end{vmatrix} = - 1, C_{12} = - \begin{vmatrix}0 & \sin\alpha \\ 0 & - \cos\alpha\end{vmatrix} = 0\text{ and }C_{13} = \begin{vmatrix}0 & \cos\alpha \\ 0 & \sin\alpha\end{vmatrix} = 0\]
\[ C_{21} = - \begin{vmatrix}0 & 0 \\ \sin\alpha & - \cos\alpha\end{vmatrix} = 0, C_{22} = \begin{vmatrix}1 & 0 \\ 0 & - \cos\alpha\end{vmatrix} = - \cos\alpha\text{ and }C_{23} = - \begin{vmatrix}1 & 0 \\ 0 & \sin\alpha\end{vmatrix} = - \sin\alpha\]
\[ C_{31} = \begin{vmatrix}0 & 0 \\ \cos\alpha & \sin\alpha\end{vmatrix} = 0, C_{32} = - \begin{vmatrix}1 & 0 \\ 0 & \sin\alpha\end{vmatrix} = - \sin\alpha\text{ and }C_{33} = \begin{vmatrix}1 & 0 \\ 0 & \cos\alpha\end{vmatrix} = \cos\alpha\]
\[adjF = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - \cos\alpha & - \sin\alpha \\ 0 & - \sin\alpha & \cos\alpha\end{bmatrix}^T = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - \cos\alpha & - \sin\alpha \\ 0 & - \sin\alpha & \cos\alpha\end{bmatrix}\]
\[and \left| F \right| = - 1\]
\[ \therefore F^{- 1} = - 1\begin{bmatrix}- 1 & 0 & 0 \\ 0 & - \cos\alpha & - \sin\alpha \\ 0 & - \sin\alpha & \cos\alpha\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\ 0 & \cos\alpha & \sin\alpha \\ 0 & \sin\alpha & - \cos\alpha\end{bmatrix}\]
APPEARS IN
संबंधित प्रश्न
Find the adjoint of the matrices.
`[(1,-1,2),(2,3,5),(-2,0,1)]`
Find the inverse of the matrices (if it exists).
`[(1,2,3),(0,2,4),(0,0,5)]`
For the matrix A = `[(3,2),(1,1)]` find the numbers a and b such that A2 + aA + bI = O.
For the matrix A = `[(1,1,1),(1,2,-3),(2,-1,3)]` show that A3 − 6A2 + 5A + 11 I = O. Hence, find A−1.
If A = `[(2,-1,1),(-1,2,-1),(1,-1,2)]` verify that A3 − 6A2 + 9A − 4I = O and hence find A−1
If A is an invertible matrix of order 2, then det (A−1) is equal to ______.
Let A = `[(1,-2,1),(-2,3,1),(1,1,5)]` verify that
- [adj A]–1 = adj (A–1)
- (A–1)–1 = A
Let A = `[(1, sin theta, 1),(-sin theta,1,sin 1),(-1, -sin theta, 1)]` where 0 ≤ θ≤ 2π, then ______.
If \[A = \begin{bmatrix}- 4 & - 3 & - 3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{bmatrix}\], show that adj A = A.
If \[A = \begin{bmatrix}- 1 & - 2 & - 2 \\ 2 & 1 & - 2 \\ 2 & - 2 & 1\end{bmatrix}\] , show that adj A = 3AT.
Find the inverse of the following matrix:
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]
For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]
\[A = \begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 5 \\ 3 & 4\end{bmatrix}\]
Find the inverse of the matrix \[A = \begin{bmatrix}a & b \\ c & \frac{1 + bc}{a}\end{bmatrix}\] and show that \[a A^{- 1} = \left( a^2 + bc + 1 \right) I - aA .\]
If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that
If \[A = \begin{bmatrix}4 & 3 \\ 2 & 5\end{bmatrix}\], find x and y such that
If \[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix}\], find the value of \[\lambda\] so that \[A^2 = \lambda A - 2I\]. Hence, find A−1.
Show that \[A = \begin{bmatrix}6 & 5 \\ 7 & 6\end{bmatrix}\] satisfies the equation \[x^2 - 12x + 1 = O\]. Thus, find A−1.
If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that \[A^2 = A^{- 1} .\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}3 & 10 \\ 2 & 7\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 0 & - 1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{bmatrix}\]
Find the inverse by using elementary row transformations:
\[\begin{bmatrix}2 & 3 & 1 \\ 2 & 4 & 1 \\ 3 & 7 & 2\end{bmatrix}\]
Find the inverse of the matrix \[\begin{bmatrix}3 & - 2 \\ - 7 & 5\end{bmatrix} .\]
If \[A = \begin{bmatrix}3 & 1 \\ 2 & - 3\end{bmatrix}\], then find |adj A|.
If A is an invertible matrix, then which of the following is not true ?
If A is an invertible matrix of order 3, then which of the following is not true ?
If A, B are two n × n non-singular matrices, then __________ .
If for the matrix A, A3 = I, then A−1 = _____________ .
(a) 3
(b) 0
(c) − 3
(d) 1
If a matrix A is such that \[3A^3 + 2 A^2 + 5 A + I = 0,\text{ then }A^{- 1}\] equal to _______________ .
If A is an invertible matrix, then det (A−1) is equal to ____________ .
Find the value of x for which the matrix A `= [(3 - "x", 2, 2),(2,4 - "x", 1),(-2,- 4,-1 - "x")]` is singular.
For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?
For matrix A = `[(2,5),(-11,7)]` (adj A)' is equal to: