हिंदी

Differentiate tan^(-1)(sqrt(√(1-x^2)/x) with respect to cos^(-1)(2x√(1-x^2)) ,when x!=0 - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate `tan^(-1)(sqrt(1-x^2)/x)` with respect to `cos^(-1)(2xsqrt(1-x^2))` ,when `x!=0`

उत्तर

`Let `

Putting x=cosθ, we get:

`y =tan^(-1)(sqrt(1-cos^2theta)/costheta)=tan^(-1)(sintheta/costheta)=tan^(-1)(tantheta)=theta`

`y = cos^(−1)x`

On differentiating with respect to x, we get:

`dy/dx=-1/sqrt(1-x^2).........(1)`

Now assume that

`z=cos^(-1)(2xsqrt(1-x^2))`

`z=cos^(-1)(2sintheta costheta)=cos^(-1)(sin2theta)=cos^(-1)(cos(pi/2-2theta))=pi/2-2theta=pi/2-2cos^(-1)x`

On differentiating with respect to x, we get:

`dz/dx=2/sqrt(1-x^2)............(2)`

We know that,

`dy/dz=(dy/dx)/(dz/dx)`

So, from equations (1) and (2), we get:

`dy/dz=(-1/sqrt(1-x^2))/(2/sqrt(1-x^2))=-1/2`

Derivative of `tan^(-1)(sqrt(1-x^2)/x)` with respect to `cos^(-1)(2xsqrt(1-x^2))  is -1/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March) Delhi Set 1

संबंधित प्रश्न

Differentiate `cos^-1((3cosx-2sinx)/sqrt13)` w. r. t. x.


If `sec((x+y)/(x-y))=a^2. " then " (d^2y)/dx^2=........`

(a) y

(b) x

(c) y/x

(d) 0


If `y=sin^-1(3x)+sec^-1(1/(3x)), `  find dy/dx


Find : ` d/dx cos^−1 ((x−x^(−1))/(x+x^(−1)))`


Find the derivative of the following function f(x) w.r.t. x, at x = 1 : 

`f(x)=cos^-1[sin sqrt((1+x)/2)]+x^x`


if `y = sin^(-1)[(6x-4sqrt(1-4x^2))/5]` Find `dy/dx `.


If `y=tan^(−1) ((sqrt(1+x^2)+sqrt(1−x^2))/(sqrt(1+x^2)−sqrt(1−x^2)))` , x21, then find dy/dx.


Find `dy/dx, if y = sin^-1 x + sin^-1 sqrt (1 - x^2) , 0<x <1`


If `xsqrt(1+y) + y  sqrt(1+x) = 0`, for, −1 < x <1, prove that `dy/dx = 1/(1+ x)^2`


If `sqrt(1-x^2)  + sqrt(1- y^2)` =  a(x − y), show that dy/dx = `sqrt((1-y^2)/(1-x^2))`


Find the approximate value of tan−1 (1.001).


Differentiate `tan^(-1) ((1+cosx)/(sin x))` with respect to x


Solve `cos^(-1)(sin cos^(-1)x) = pi/2`


If y = (sec-1 x )2 , x > 0, show that 

`x^2 (x^2 - 1) (d^2 y)/(dx^2) + (2x^3 - x ) dy/dx -2 = 0`


If y = cos (sin x), show that: `("d"^2"y")/("dx"^2) + "tan x" "dy"/"dx" + "y"  "cos"^2"x" = 0`


If `log (x^2 + y^2) = 2 tan^-1 (y/x)`, show that `(dy)/(dx) = (x + y)/(x - y)`


If `"y" = (sin^-1 "x")^2, "prove that" (1 - "x"^2) (d^2"y")/(d"x"^2) - "x" (d"y")/(d"x") - 2 = 0`.


If y = `(sin^-1 x)^2,` prove that `(1-x^2) (d^2y)/dx^2 - x dy/dx -2 = 0.`


The function f(x) = cot x is discontinuous on the set ______.


`lim_("x" -> -3) sqrt("x"^2 + 7 - 4)/("x" + 3)` is equal to ____________.


`lim_("x"-> 0) ("cosec x - cot x")/"x"`  is equal to ____________.


If `"y = sin"^-1 ((sqrt"x" - 1)/(sqrt"x" + 1)) + "sec"^-1 ((sqrt"x" + 1)/(sqrt"x" - 1)), "x" > 0, "then"  "dy"/"dx"` is ____________.


If y = sin–1x, then (1 – x2)y2 is equal to ______.


Differentiate `sec^-1 (1/sqrt(1 - x^2))` w.r.t. `sin^-1 (2xsqrt(1 - x^2))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×