Advertisements
Advertisements
प्रश्न
Differentiate `tan^(-1) ((1+cosx)/(sin x))` with respect to x
उत्तर
Let y = `tan^(-1) (1+cosx)/(sin x)` Then
`=> y = tan^(-1) ((2cos^2 x/2)/(2sin x/2,cos x/2))`
`=> y = tan^-1 (cot x/2)`
`=> y = tan^-1 {tan (pi/2 - x/2)}`
`=> y = pi/2 -pi/2`
`∴ (dy)/(dx) = 0 - 1/2 = - 1/2`
APPEARS IN
संबंधित प्रश्न
Find : ` d/dx cos^−1 ((x−x^(−1))/(x+x^(−1)))`
if `y = sin^(-1)[(6x-4sqrt(1-4x^2))/5]` Find `dy/dx `.
If `y=tan^(−1) ((sqrt(1+x^2)+sqrt(1−x^2))/(sqrt(1+x^2)−sqrt(1−x^2)))` , x2≤1, then find dy/dx.
Find `dy/dx` in the following:
`y = tan^(-1) ((3x -x^3)/(1 - 3x^2)), - 1/sqrt3 < x < 1/sqrt3`
Find `dy/dx` in the following:
`y = sin^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`
Find `dx/dy` in the following:
`y = cos^(-1) ((2x)/(1+x^2)), -1 < x < 1`
Find `dy/dx` in the following:
`y = sec^(-1) (1/(2x^2 - 1)), 0 < x < 1/sqrt2`
Find `dy/dx, if y = sin^-1 x + sin^-1 sqrt (1 - x^2) , 0<x <1`
If `xsqrt(1+y) + y sqrt(1+x) = 0`, for, −1 < x <1, prove that `dy/dx = 1/(1+ x)^2`
If `sqrt(1-x^2) + sqrt(1- y^2)` = a(x − y), show that dy/dx = `sqrt((1-y^2)/(1-x^2))`
Find the approximate value of tan−1 (1.001).
if `x = tan(1/a log y)`, prove that `(1+x^2) (d^2y)/(dx^2) + (2x + a) (dy)/(dx) = 0`
Solve `cos^(-1)(sin cos^(-1)x) = pi/2`
If y = sin-1 x + cos-1x find `(dy)/(dx)`.
If `"y" = (sin^-1 "x")^2, "prove that" (1 - "x"^2) (d^2"y")/(d"x"^2) - "x" (d"y")/(d"x") - 2 = 0`.
If y = `(sin^-1 x)^2,` prove that `(1-x^2) (d^2y)/dx^2 - x dy/dx -2 = 0.`
The function f(x) = cot x is discontinuous on the set ______.
Trigonometric and inverse-trigonometric functions are differentiable in their respective domain.
`lim_("h" -> 0) (1/("h"^2 sqrt(8 + "h")) - 1/(2"h"))` is equal to ____________.
`lim_("x"-> 0) ("cosec x - cot x")/"x"` is equal to ____________.
If `"y = sin"^-1 ((sqrt"x" - 1)/(sqrt"x" + 1)) + "sec"^-1 ((sqrt"x" + 1)/(sqrt"x" - 1)), "x" > 0, "then" "dy"/"dx"` is ____________.
The derivative of sin x with respect to log x is ____________.
The derivative of `sin^-1 ((2x)/(1 + x^2))` with respect to `cos^-1 [(1 - x^2)/(1 + x^2)]` is equal to
If y = sin–1x, then (1 – x2)y2 is equal to ______.