मराठी

Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls? Given that - Mathematics

Advertisements
Advertisements

प्रश्न

Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls? Given that

  1. the youngest is a girl.
  2. at least one is a girl.
बेरीज

उत्तर

Let the first and second children be the girls G1, G2 and the boys be B1, B2

∴ S = {(G1, G2), (G1, B2), (G2, B1), (B1, B2)}

Let A = both children are girls = {G1, G2}

B = Youngest child is a girl = {(G1, G2), (B1, G2)}

C = At ​​least one child is a girl = {(G1, B2), (G1, G2), (B1, G2)}

A ∩ B = {G1, G2},

A ∩ C = {G1, G2}

P(A ∩ B) = `1/4`, P(A ∩ C) = `1/4`

P(B) = `2/4`, P(C) = `3/4`

  1. P(A|B) = `(P(A ∩ B))/(P(B)) = 1/4 ÷ 2/4 = 1/2`
  2. P(A|C) = `(P(A ∩ C))/(P(C)) = 1/4 ÷ 3/4 = 1/3`
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Probability - Exercise 13.1 [पृष्ठ ५३९]

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

An insurance agent insures lives of 5 men, all of the same age and in good health. The probability that a man of this age will survive the next 30 years is known to be 2/3 . Find the probability that in the next 30 years at most 3 men will survive.


The probability that a certain kind of component will survive a check test is 0.6. Find the probability that exactly 2 of the next 4 tested components survive


A die is thrown three times. Events A and B are defined as below:
A : 5 on the first and 6 on the second throw.
B: 3 or 4 on the third throw.

Find the probability of B, given that A has already occurred.


A bag X contains 4 white balls and 2 black balls, while another bag Y contains 3 white balls and 3 black balls. Two balls are drawn (without replacement) at random from one of the bags and were found to be one white and one black. Find the probability that the balls were drawn from bag Y.


Suppose that 80% of all families own a television set. If 5 families are interviewed at  random, find the probability that
a. three families own a television set.
b. at least two families own a television set.


Determine P(E|F).

Two coins are tossed once, where 

E: no tail appears, F: no head appears


A black and a red dice are rolled. 

Find the conditional probability of obtaining a sum greater than 9, given that the black die resulted in a 5.


Consider the experiment of throwing a die, if a multiple of 3 comes up, throw the die again and if any other number comes, toss a coin. Find the conditional probability of the event ‘the coin shows a tail’, given that ‘at least one die shows a 3’.


If a leap year is selected at random, what is the chance that it will contain 53 Tuesdays?


A die is thrown again and again until three sixes are obtained. Find the probability of obtaining the third six in the sixth throw of the die.


Box I contains two white and three black balls. Box II contains four white and one black balls and box III contains three white ·and four black balls. A dice having three red, two yellow and one green face, is thrown to select the box. If red face turns up, we pick up the box I, if a yellow face turns up we pick up box II, otherwise, we pick up box III. Then, we draw a ball from the selected box. If the ball is drawn is white, what is the probability that the dice had turned up with a red face?


Two dice are thrown simultaneously, If at least one of the dice show a number 5, what is the probability that sum of the numbers on two dice is 9?


In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in exactly one subject?


An urn contains 4 black, 5 white, and 6 red balls. Two balls are drawn one after the other without replacement, What is the probability that at least one ball is black?


From a pack of well-shuffled cards, two cards are drawn at random. Find the probability that both the cards are diamonds when the first card drawn is replaced in the pack


Three fair coins are tossed. What is the probability of getting three heads given that at least two coins show heads?


Select the correct option from the given alternatives :

Bag I contains 3 red and 4 black balls while another Bag II contains 5 red and 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. The probability that it was drawn from Bag II


If A and B are two events such that P(A ∪ B) = 0.7, P(A ∩ B) = 0.2, and P(B) = 0.5, then show that A and B are independent


One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that both are white


Two thirds of students in a class are boys and rest girls. It is known that the probability of a girl getting a first grade is 0.85 and that of boys is 0.70. Find the probability that a student chosen at random will get first grade marks.


Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if P(B/A) = 0.5


A year is selected at random. What is the probability that it is a leap year which contains 53 Sundays


Choose the correct alternative:

If A and B are any two events, then the probability that exactly one of them occur is


Three machines E1, E2, E3 in a certain factory produced 50%, 25% and 25%, respectively, of the total daily output of electric tubes. It is known that 4% of the tubes produced one each of machines E1 and E2 are defective, and that 5% of those produced on E3 are defective. If one tube is picked up at random from a day’s production, calculate the probability that it is defective.


Let A and B be two events. If P(A) = 0.2, P(B) = 0.4, P(A ∪ B) = 0.6, then P(A|B) is equal to ______.


If P(A) = `4/5`, and P(A ∩ B) = `7/10`, then P(B|A) is equal to ______.


If P(A) = `3/10`, P(B) = `2/5` and P(A ∪ B) = `3/5`, then P(B|A) + P(A|B) equals ______.


If P(A) = `2/5`, P(B) = `3/10` and P(A ∩ B) = `1/5`, then P(A|B).P(B'|A') is equal to ______.


If P(A) = 0.4, P(B) = 0.8 and P(B|A) = 0.6, then P(A ∪ B) is equal to ______.


Two cards are drawn out randomly from a pack of 52 cards one after the other, without replacement. The probability of first card being a king and second card not being a king is:


Let A and B be two non-null events such that A ⊂ B. Then, which of the following statements is always correct?


For a biased dice, the probability for the different faces to turn up are

Face 1 2 3 4 5 6
P 0.10 0.32 0.21 0.15 0.05 0.17

The dice is tossed and it is told that either the face 1 or face 2 has shown up, then the probability that it is face 1, is ______.


Let A, B be two events such that the probability of A is `3/10` and conditional probability of A given B is `1/2`. The probability that exactly one of the events A or B happen equals.


If A and B are two independent events such that P(A) = `1/3` and P(B) = `1/4`, then `P(B^'/A)` is ______.


Students of under graduation submitted a case study on “Understanding the Probability of Left-Handedness in Children Based on Parental Handedness”. Following Recent studies suggest that roughly 12% of the world population is left-handed. Depending on the parents’ handedness, the chances of having a left-handed child are as follows:

Scenario A: Both parents are left-handed, with a 24% chance of the child being left-handed.

Scenario B: The fathers is right-handed and the mothers left-handed, with a 22% chance of child being left-handed.

Scenario C: The fathers left-handed and the mother is right-handed, with a 17% chance of child being left-handed.

Scenario D: Both parents are right-handed, with a 9% chance of having a left-handed child.

Assuming that scenarios A, B, C and D are equally likely and L denotes the event that the child is left-handed, answer the following questions.

  1. What is the overall probability that a randomly selected child is left-handed?
  2. Given that exactly one parent is left-handed, what is the probability that a randomly selected child is left-handed?
  3. If a child is left-handed, what is the probability that both parents are left-handed?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×