Advertisements
Advertisements
प्रश्न
Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls? Given that
- the youngest is a girl.
- at least one is a girl.
उत्तर
Let the first and second children be the girls G1, G2 and the boys be B1, B2
∴ S = {(G1, G2), (G1, B2), (G2, B1), (B1, B2)}
Let A = both children are girls = {G1, G2}
B = Youngest child is a girl = {(G1, G2), (B1, G2)}
C = At least one child is a girl = {(G1, B2), (G1, G2), (B1, G2)}
A ∩ B = {G1, G2},
A ∩ C = {G1, G2}
P(A ∩ B) = `1/4`, P(A ∩ C) = `1/4`
P(B) = `2/4`, P(C) = `3/4`
- P(A|B) = `(P(A ∩ B))/(P(B)) = 1/4 ÷ 2/4 = 1/2`
- P(A|C) = `(P(A ∩ C))/(P(C)) = 1/4 ÷ 3/4 = 1/3`
APPEARS IN
संबंधित प्रश्न
The probability that a certain kind of component will survive a check test is 0.6. Find the probability that exactly 2 of the next 4 tested components survive
In a game, a man wins Rs 5 for getting a number greater than 4 and loses Rs 1 otherwise, when a fair die is thrown. The man decided to thrown a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/loses
If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find P(A ∪ B)
Determine P(E|F).
Two coins are tossed once, where
E: no tail appears, F: no head appears
Determine P(E|F).
A die is thrown three times,
E: 4 appears on the third toss, F: 6 and 5 appears respectively on first two tosses
Determine P(E|F).
Mother, father and son line up at random for a family picture
E: son on one end, F: father in middle
Consider the experiment of throwing a die, if a multiple of 3 comes up, throw the die again and if any other number comes, toss a coin. Find the conditional probability of the event ‘the coin shows a tail’, given that ‘at least one die shows a 3’.
If P(A) = `1/2`, P(B) = 0, then P(A|B) is ______.
Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that
- both balls are red.
- first ball is black and second is red.
- one of them is black and other is red.
If A and B are events such as that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`, then find
1) P(A / B)
2) P(B / A)
A card is drawn from a well-shuffled pack of playing cards. What is the probability that it is either a spade or an ace or both?
An urn contains 2 white and 2 black balls. A ball is drawn at random. If it is white, it is not replaced into the urn. Otherwise, it is replaced with another ball of the same colour. The process is repeated. Find the probability that the third ball is drawn is black.
If events A and B are independent, such that `P(A)= 3/5`, `P(B)=2/3` 'find P(A ∪ B).
In a college, 70% of students pass in Physics, 75% pass in Mathematics and 10% of students fail in both. One student is chosen at random. What is the probability that:
(i) He passes in Physics and Mathematics?
(ii) He passes in Mathematics given that he passes in Physics.
(iii) He passes in Physics given that he passes in Mathematics.
An urn contains 4 black, 5 white, and 6 red balls. Two balls are drawn one after the other without replacement, What is the probability that at least one ball is black?
Two cards are drawn one after the other from a pack of 52 cards without replacement. What is the probability that both the cards drawn are face cards?
If A and B are two events such that P(A ∪ B) = 0.7, P(A ∩ B) = 0.2, and P(B) = 0.5, then show that A and B are independent
If A and B are two independent events such that P(A ∪ B) = 0.6, P(A) = 0.2, find P(B)
A problem in Mathematics is given to three students whose chances of solving it are `1/3, 1/4` and `1/5`. What is the probability that exactly one of them will solve it?
The probability that a car being filled with petrol will also need an oil change is 0.30; the probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter need changing is 0.15. If the oil had to be changed, what is the probability that a new oil filter is needed?
One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that one white and one black
Two thirds of students in a class are boys and rest girls. It is known that the probability of a girl getting a first grade is 0.85 and that of boys is 0.70. Find the probability that a student chosen at random will get first grade marks.
Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if P(B/A) = 0.5
A year is selected at random. What is the probability that it contains 53 Sundays
A year is selected at random. What is the probability that it is a leap year which contains 53 Sundays
Suppose the chances of hitting a target by a person X is 3 times in 4 shots, by Y is 4 times in 5 shots, and by Z is 2 times in 3 shots. They fire simultaneously exactly one time. What is the probability that the target is damaged by exactly 2 hits?
Choose the correct alternative:
If A and B are any two events, then the probability that exactly one of them occur is
The total number of ways in which 5 balls of different colours can be distributed among 3 persons so that each person gets at least one ball is ______
Three machines E1, E2, E3 in a certain factory produced 50%, 25% and 25%, respectively, of the total daily output of electric tubes. It is known that 4% of the tubes produced one each of machines E1 and E2 are defective, and that 5% of those produced on E3 are defective. If one tube is picked up at random from a day’s production, calculate the probability that it is defective.
If P(A) = `3/10`, P(B) = `2/5` and P(A ∪ B) = `3/5`, then P(B|A) + P(A|B) equals ______.
If two balls are drawn from a bag containing 3 white, 4 black and 5 red balls. Then, the probability that the drawn balls are of different colours is:
A bag contains 3 red and 4 white balls and another bag contains 2 red and 3 white balls. If one ball is drawn from the first bag and 2 balls are drawn from the second bag, then find the probability that all three balls are of the same colour.
A Problem in Mathematics is given to the three students A, B and C. Their chances of solving the problem are `1/2, 1/3` and `1/4` respectively. Find the probability that at least two of them will solve the problem.