हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Two thirds of students in a class are boys and rest girls. It is known that the probability of a girl getting a first grade is 0.85 and that of boys is 0.70. Find the probability that - Mathematics

Advertisements
Advertisements

प्रश्न

Two thirds of students in a class are boys and rest girls. It is known that the probability of a girl getting a first grade is 0.85 and that of boys is 0.70. Find the probability that a student chosen at random will get first grade marks.

योग

उत्तर

Let G be the event of choosing a boy and G be the event of choosing a girl.

Given P(B) = `2/3`

P(G) = `1/3`

Let B1 be the event of a boy getting first grade

P(B1) = 0.70

Let G1 be the event of a girl getting first grade

P(G1) = 0.85

Probability of a student getting a first grade = Probability of a boy getting first grade or Probability
of a Girl getting first grade

= P(B) × P(B1) + P(G) × P(G1)

= `2/3 xx 0.70 + 1/3 x 0.85`

= `(1.4 + 0.85)/3`

= `2.25/3`

= 0.75

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Introduction to probability theory - Exercise 12.3 [पृष्ठ २५९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 12 Introduction to probability theory
Exercise 12.3 | Q 9 | पृष्ठ २५९

संबंधित प्रश्न

40% students of a college reside in hostel and the remaining reside outside. At the end of the year, 50% of the hostelers got A grade while from outside students, only 30% got A grade in the examination. At the end of the year, a student of the college was chosen at random and was found to have gotten A grade. What is the probability that the selected student was a hosteler ?


A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P (E|G) and P (G|E)


An instructor has a question bank consisting of 300 easy True/False questions, 200 difficult True/False questions, 500 easy multiple choice questions and 400 difficult multiple choice questions. If a question is selected at random from the question bank, what is the probability that it will be an easy question given that it is a multiple-choice question?


Consider the experiment of throwing a die, if a multiple of 3 comes up, throw the die again and if any other number comes, toss a coin. Find the conditional probability of the event ‘the coin shows a tail’, given that ‘at least one die shows a 3’.


A card is drawn from a well-shuffled pack of playing cards. What is the probability that it is either a spade or an ace or both? 


An urn contains 2 white and 2 black balls. A ball is drawn at random. If it is white, it is not replaced into the urn. Otherwise, it is replaced with another ball of the same colour. The process is repeated. Find the probability that the third ball is drawn is black.


A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.


Two dice are thrown simultaneously, If at least one of the dice show a number 5, what is the probability that sum of the numbers on two dice is 9?


In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in at least one subject?


In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in exactly one subject?


From a pack of well-shuffled cards, two cards are drawn at random. Find the probability that both the cards are diamonds when first card drawn is kept aside


Three fair coins are tossed. What is the probability of getting three heads given that at least two coins show heads?


Select the correct option from the given alternatives :

Bag I contains 3 red and 4 black balls while another Bag II contains 5 red and 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. The probability that it was drawn from Bag II


If A and B are two independent events such that P(A ∪ B) = 0.6, P(A) = 0.2, find P(B)


One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that both are black


Choose the correct alternative:

A, B, and C try to hit a target simultaneously but independently. Their respective probabilities of hitting the target are `3/4, 1/2, 5/8`. The probability that the target is hit by A or B but not by C is


Two dice are thrown. Find the probability that the sum of numbers appearing is more than 11, is ______.


A pack of cards has one card missing. Two cards are drawn randomly and are found to be spades. The probability that the missing card is not a spade, is ______.


For a biased dice, the probability for the different faces to turn up are

Face 1 2 3 4 5 6
P 0.10 0.32 0.21 0.15 0.05 0.17

The dice is tossed and it is told that either the face 1 or face 2 has shown up, then the probability that it is face 1, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×