हिंदी

An instructor has a question bank consisting of 300 easy True/False questions, 200 difficult True/False questions, 500 easy multiple choice questions and 400 difficult multiple choice - Mathematics

Advertisements
Advertisements

प्रश्न

An instructor has a question bank consisting of 300 easy True/False questions, 200 difficult True/False questions, 500 easy multiple choice questions and 400 difficult multiple choice questions. If a question is selected at random from the question bank, what is the probability that it will be an easy question given that it is a multiple-choice question?

योग

उत्तर

The given data can be tabulated as

  True/False Multiple choice Total
Easy 300 500 800
Difficult 200 400 600
Total 500 900 1400

Total number of questions = 300 + 200 + 500 + 400 = 1400

Let us denote easy and multiple-choice questions by E and F respectively, and then

n(E) = 300 + 500 = 800

n(F) = 500 + 400 = 900

E ∩ F: 'Easy Multiple Choice Questions' i.e. n(E ∩ F) = 500

or  P(E ∩ F) = `500/1400`

and P(F) = `900/1400`

Hence,`P(E/F) = (P(E ∩ F))/(P(F))`

`= (500/1400) ÷ (900/1400)`

= `5/9`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Probability - Exercise 13.1 [पृष्ठ ५३९]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 13 Probability
Exercise 13.1 | Q 13 | पृष्ठ ५३९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

In a game, a man wins Rs 5 for getting a number greater than 4 and loses Rs 1 otherwise, when a fair die is thrown. The man decided to thrown a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/loses


If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find

  1. P(A ∩ B)
  2. P(A|B)
  3. P(A ∪ B)

Determine P(E|F).

Two coins are tossed once, where 

E: no tail appears, F: no head appears


A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P (E|F) and P (F|E)


A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P (E|G) and P (G|E)


A die is tossed thrice. Find the probability of getting an odd number at least once.


If a leap year is selected at random, what is the chance that it will contain 53 Tuesdays?


Suppose we have four boxes. A, B, C and D containing coloured marbles as given below:

Box Marble colour
  Red White Black
A 1 6 3
B 6 2 2
C 8 1 1
D 0 6 4

One of the boxes has been selected at random and a single marble is drawn from it. If the marble is red, what is the probability that it was drawn from box A?, box B?, box C?


An urn contains 2 white and 2 black balls. A ball is drawn at random. If it is white, it is not replaced into the urn. Otherwise, it is replaced with another ball of the same colour. The process is repeated. Find the probability that the third ball is drawn is black.


A pair of dice is thrown. If sum of the numbers is an even number, what is the probability that it is a perfect square?


In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in exactly one subject?


A bag contains 10 white balls and 15 black balls. Two balls are drawn in succession without replacement. What is the probability that, first is white and second is black?


Can two events be mutually exclusive and independent simultaneously?


If P(A) = 0.5, P(B) = 0.8 and P(B/A) = 0.8, find P(A/B) and P(A ∪ B)


A problem in Mathematics is given to three students whose chances of solving it are `1/3, 1/4` and `1/5`. What is the probability that the problem is solved?


The probability that a car being filled with petrol will also need an oil change is 0.30; the probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter need changing is 0.15. If the oil had to be changed, what is the probability that a new oil filter is needed?


Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if A and B are mutually exclusive


Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if A and B are independent events


Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if P(A/B) = 0.4


A year is selected at random. What is the probability that it contains 53 Sundays


A year is selected at random. What is the probability that it is a leap year which contains 53 Sundays


Suppose the chances of hitting a target by a person X is 3 times in 4 shots, by Y is 4 times in 5 shots, and by Z is 2 times in 3 shots. They fire simultaneously exactly one time. What is the probability that the target is damaged by exactly 2 hits?


Choose the correct alternative:

A, B, and C try to hit a target simultaneously but independently. Their respective probabilities of hitting the target are `3/4, 1/2, 5/8`. The probability that the target is hit by A or B but not by C is


Choose the correct alternative:

If A and B are any two events, then the probability that exactly one of them occur is


Choose the correct alternative:

A letter is taken at random from the letters of the word ‘ASSISTANT’ and another letter is taken at random from the letters of the word ‘STATISTICS’. The probability that the selected letters are the same is


Choose the correct alternative:

If two events A and B are independent such that P(A) = 0.35 and P(A ∪ B) = 0.6, then P(B) is


Three machines E1, E2, E3 in a certain factory produced 50%, 25% and 25%, respectively, of the total daily output of electric tubes. It is known that 4% of the tubes produced one each of machines E1 and E2 are defective, and that 5% of those produced on E3 are defective. If one tube is picked up at random from a day’s production, calculate the probability that it is defective.


Find the probability that in 10 throws of a fair die a score which is a multiple of 3 will be obtained in at least 8 of the throws.


Let A and B be two events. If P(A) = 0.2, P(B) = 0.4, P(A ∪ B) = 0.6, then P(A|B) is equal to ______.


If P(A) = 0.4, P(B) = 0.8 and P(B|A) = 0.6, then P(A ∪ B) is equal to ______.


A pack of cards has one card missing. Two cards are drawn randomly and are found to be spades. The probability that the missing card is not a spade, is ______.


Bag I contains 3 red, 4 black and 3 white balls and Bag II contains 2 red, 5 black and 2 white balls. One ball is transferred from Bag I to Bag II and then a ball is draw from Bag II. The ball so drawn is found to be black in colour. Then the probability, that the transferred ball is red, is ______.


For a biased dice, the probability for the different faces to turn up are

Face 1 2 3 4 5 6
P 0.10 0.32 0.21 0.15 0.05 0.17

The dice is tossed and it is told that either the face 1 or face 2 has shown up, then the probability that it is face 1, is ______.


If for any two events A and B, P(A) = `4/5` and P(A ∩ B) = `7/10`, then `P(B/A)` is equal to ______.


Students of under graduation submitted a case study on “Understanding the Probability of Left-Handedness in Children Based on Parental Handedness”. Following Recent studies suggest that roughly 12% of the world population is left-handed. Depending on the parents’ handedness, the chances of having a left-handed child are as follows:

Scenario A: Both parents are left-handed, with a 24% chance of the child being left-handed.

Scenario B: The fathers is right-handed and the mothers left-handed, with a 22% chance of child being left-handed.

Scenario C: The fathers left-handed and the mother is right-handed, with a 17% chance of child being left-handed.

Scenario D: Both parents are right-handed, with a 9% chance of having a left-handed child.

Assuming that scenarios A, B, C and D are equally likely and L denotes the event that the child is left-handed, answer the following questions.

  1. What is the overall probability that a randomly selected child is left-handed?
  2. Given that exactly one parent is left-handed, what is the probability that a randomly selected child is left-handed?
  3. If a child is left-handed, what is the probability that both parents are left-handed?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×