Advertisements
Advertisements
प्रश्न
If P(A) = 0.5, P(B) = 0.8 and P(B/A) = 0.8, find P(A/B) and P(A ∪ B)
उत्तर
Given P(A) = 0.5
P(B) = 0.8
and P(B/A) = 0.8
P(A/B) = `("P"("A" ∩ "B"))/("P"("B"))` .........(1)
P(B/A) = `("P"("B" ∩ "A"))/("P"("A"))`
P(A ∩ B) = P(B/A) P(A)
Substituting in equation (1) we get
(1) ⇒ P(A/B) = `("P"("B"/"A") * "p"("A"))/("P"("B"))`
= `(0.8 xx 0.5)/0.8`
P(A/B) = 0.5
P(A ∪ B) = P(A) + P(B) – P(A ∩ B) .........(2)
We have P(A/B) = `("P"("A" ∩ "B"))/("P"("B"))`
P(A ∩ B) = P(A/B) . P(B)
= 0.5 × 0.8
P(A ∩ B) = 0.40
(2) ⇒ P(A ∪ B) = 0.5 + 0.8 – 0.40
= 1.3 – 0.40
P(A ∪ B) = 0.90
APPEARS IN
संबंधित प्रश्न
In a game, a man wins Rs 5 for getting a number greater than 4 and loses Rs 1 otherwise, when a fair die is thrown. The man decided to thrown a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/loses
Determine P(E|F).
A coin is tossed three times, where
E: at least two heads, F: at most two heads
Determine P(E|F).
Two coins are tossed once, where
E: no tail appears, F: no head appears
A black and a red dice are rolled.
Find the conditional probability of obtaining a sum greater than 9, given that the black die resulted in a 5.
A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P (E|G) and P (G|E)
Given that the two numbers appearing on throwing the two dice are different. Find the probability of the event ‘the sum of numbers on the dice is 4’.
A die is tossed thrice. Find the probability of getting an odd number at least once.
Three cards are drawn at random (without replacement) from a well-shuffled pack of 52 playing cards. Find the probability distribution of the number of red cards. Hence, find the mean of the distribution.
Bag A contains 4 white balls and 3 black balls. While Bag B contains 3 white balls and 5 black balls. Two balls are drawn from Bag A and placed in Bag B. Then, what is the probability of drawing a white ball from Bag B?
In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in subject I, if it is known that he is failed in subject II?
A bag contains 10 white balls and 15 black balls. Two balls are drawn in succession without replacement. What is the probability that, one is white and other is black?
Two cards are drawn one after the other from a pack of 52 cards without replacement. What is the probability that both the cards drawn are face cards?
A problem in Mathematics is given to three students whose chances of solving it are `1/3, 1/4` and `1/5`. What is the probability that the problem is solved?
The probability that a car being filled with petrol will also need an oil change is 0.30; the probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter need changing is 0.15. If the oil had to be changed, what is the probability that a new oil filter is needed?
Two thirds of students in a class are boys and rest girls. It is known that the probability of a girl getting a first grade is 0.85 and that of boys is 0.70. Find the probability that a student chosen at random will get first grade marks.
Two cards are drawn out randomly from a pack of 52 cards one after the other, without replacement. The probability of first card being a king and second card not being a king is:
Let A and B be two non-null events such that A ⊂ B. Then, which of the following statements is always correct?
For a biased dice, the probability for the different faces to turn up are
Face | 1 | 2 | 3 | 4 | 5 | 6 |
P | 0.10 | 0.32 | 0.21 | 0.15 | 0.05 | 0.17 |
The dice is tossed and it is told that either the face 1 or face 2 has shown up, then the probability that it is face 1, is ______.
If the sum of numbers obtained on throwing a pair of dice is 9, then the probability that number obtained on one of the dice is 4, is ______.
Compute P(A|B), if P(B) = 0.5 and P (A ∩ B) = 0.32.