हिंदी

A black and a red dice are rolled. Find the conditional probability of obtaining a sum greater than 9, given that the black die resulted in a 5. - Mathematics

Advertisements
Advertisements

प्रश्न

A black and a red dice are rolled. 

Find the conditional probability of obtaining a sum greater than 9, given that the black die resulted in a 5.

योग

उत्तर

Let x denote the outcome on the black die and y denote the outcome on the red die, then sample space is

S = {(x, y): x, y ∈ (1, 2, 3, 4, 5, 6)}, which contain 6 × 6 = 36 equally likely simple events.

E: 'sum greater than 9' and F: 'black die resulted in a 5'

E = {(6, 4), (4, 6), (5, 5), (5, 6), (6, 5), (6, 6)}

and F = {(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)}

⇒ E ∩ F = {(5, 5), (5, 6)}

`P (E) = 6/36, P(F) = 6/36, P (E cap F) = 2/36`

Required probability= P(E|F)

`(P(E cap F))/(P(F)) = (2/36)/(6/36)`

`= 2/6 = 1/3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Probability - Exercise 13.1 [पृष्ठ ५३९]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 13 Probability
Exercise 13.1 | Q 10.1 | पृष्ठ ५३९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

The probability that a certain kind of component will survive a check test is 0.6. Find the probability that exactly 2 of the next 4 tested components survive


A die is thrown three times. Events A and B are defined as below:
A : 5 on the first and 6 on the second throw.
B: 3 or 4 on the third throw.

Find the probability of B, given that A has already occurred.


Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).


Evaluate P(A ∪ B), if 2P(A) = P(B) = `5/13` and P(A | B) = `2/5`


If `P(A) = 6/11, P(B) = 5/11 "and"  P(A ∪ B) = 7/11` find

  1. P(A ∩ B)
  2. P(A|B)
  3. P(B|A)

A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P (E|F) and P (F|E)


If P(A) = `1/2`,  P(B) = 0, then P(A|B) is ______.


Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that

  1. both balls are red.
  2. first ball is black and second is red.
  3. one of them is black and other is red.

A card is drawn from a well-shuffled pack of playing cards. What is the probability that it is either a spade or an ace or both? 


An urn contains 2 white and 2 black balls. A ball is drawn at random. If it is white, it is not replaced into the urn. Otherwise, it is replaced with another ball of the same colour. The process is repeated. Find the probability that the third ball is drawn is black.


 Two balls are drawn from an urn containing 3 white, 5 red and 2 black balls, one by one without replacement. What is the probability that at least one ball is red?


In a college, 70% of students pass in Physics, 75% pass in Mathematics and 10% of students fail in both. One student is chosen at random. What is the probability that:
(i) He passes in Physics and Mathematics?
(ii) He passes in Mathematics given that he passes in Physics.
(iii) He passes in Physics given that he passes in Mathematics.


In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in at least one subject?


A bag contains 10 white balls and 15 black balls. Two balls are drawn in succession without replacement. What is the probability that, one is white and other is black?


From a pack of well-shuffled cards, two cards are drawn at random. Find the probability that both the cards are diamonds when first card drawn is kept aside


Select the correct option from the given alternatives :

Bag I contains 3 red and 4 black balls while another Bag II contains 5 red and 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. The probability that it was drawn from Bag II


Can two events be mutually exclusive and independent simultaneously?


If for two events A and B, P(A) = `3/4`, P(B) = `2/5`  and A ∪ B = S (sample space), find the conditional probability P(A/B)


The probability that a car being filled with petrol will also need an oil change is 0.30; the probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter need changing is 0.15. If the oil had to be changed, what is the probability that a new oil filter is needed?


The probability that a car being filled with petrol will also need an oil change is 0.30; the probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter need changing is 0.15. If a new oil filter is needed, what is the probability that the oil has to be changed?


One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that both are white


Two thirds of students in a class are boys and rest girls. It is known that the probability of a girl getting a first grade is 0.85 and that of boys is 0.70. Find the probability that a student chosen at random will get first grade marks.


Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if A and B are independent events


Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if P(A/B) = 0.4


Choose the correct alternative:

If two events A and B are independent such that P(A) = 0.35 and P(A ∪ B) = 0.6, then P(B) is


Let A and B be two events. If P(A) = 0.2, P(B) = 0.4, P(A ∪ B) = 0.6, then P(A|B) is equal to ______.


If P(A) = `3/10`, P(B) = `2/5` and P(A ∪ B) = `3/5`, then P(B|A) + P(A|B) equals ______.


Two cards are drawn out randomly from a pack of 52 cards one after the other, without replacement. The probability of first card being a king and second card not being a king is:


A bag contains 6 red and 5 blue balls and another bag contains 5 red and 8 blue balls. A ball is drawn from the first bag and without noticing its colour is placed in the second bag. If a ball is drawn from the second bag, then find the probability that the drawn ball is red in colour.


A bag contains 3 red and 4 white balls and another bag contains 2 red and 3 white balls. If one ball is drawn from the first bag and 2 balls are drawn from the second bag, then find the probability that all three balls are of the same colour.


If P(A) = `1/2`, P(B) = 0, then `P(A/B)` is


Let A and B be two non-null events such that A ⊂ B. Then, which of the following statements is always correct?


Bag I contains 3 red, 4 black and 3 white balls and Bag II contains 2 red, 5 black and 2 white balls. One ball is transferred from Bag I to Bag II and then a ball is draw from Bag II. The ball so drawn is found to be black in colour. Then the probability, that the transferred ball is red, is ______.


If the sum of numbers obtained on throwing a pair of dice is 9, then the probability that number obtained on one of the dice is 4, is ______.


Read the following passage:

Recent studies suggest the roughly 12% of the world population is left-handed.

Depending upon the parents, the chances of having a left-handed child are as follows:

A :  When both father and mother are left-handed:
Chances of left-handed child is 24%.
B :  When father is right-handed and mother is left-handed:
Chances of left-handed child is 22%.
C :  When father is left-handed and mother is right-handed:
Chances of left-handed child is 17%.
D :  When both father and mother are right-handed:
Chances of left-handed child is 9%.

Assuming that P(A) = P(B) = P(C) = P(D) = `1/4` and L denotes the event that child is left-handed.

Based on the above information, answer the following questions:

  1. Find `P(L/C)` (1)
  2. Find `P(overlineL/A)` (1)
  3. (a) Find `P(A/L)` (2)
    OR
    (b) Find the probability that a randomly selected child is left-handed given that exactly one of the parents is left-handed. (2)

A Problem in Mathematics is given to the three students A, B and C. Their chances of solving the problem are `1/2, 1/3` and `1/4` respectively. Find the probability that exactly two students will solve the problem.


Students of under graduation submitted a case study on “Understanding the Probability of Left-Handedness in Children Based on Parental Handedness”. Following Recent studies suggest that roughly 12% of the world population is left-handed. Depending on the parents’ handedness, the chances of having a left-handed child are as follows:

Scenario A: Both parents are left-handed, with a 24% chance of the child being left-handed.

Scenario B: The fathers is right-handed and the mothers left-handed, with a 22% chance of child being left-handed.

Scenario C: The fathers left-handed and the mother is right-handed, with a 17% chance of child being left-handed.

Scenario D: Both parents are right-handed, with a 9% chance of having a left-handed child.

Assuming that scenarios A, B, C and D are equally likely and L denotes the event that the child is left-handed, answer the following questions.

  1. What is the overall probability that a randomly selected child is left-handed?
  2. Given that exactly one parent is left-handed, what is the probability that a randomly selected child is left-handed?
  3. If a child is left-handed, what is the probability that both parents are left-handed?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×