हिंदी

A black and a red dice are rolled. Find the conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4. - Mathematics

Advertisements
Advertisements

प्रश्न

A black and a red dice are rolled. 

Find the conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4.

योग

उत्तर

The sum of the reserves on the E event dice is assumed to be 8, and the number shown on the F event red die has a compatibility of less than 4.

E = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)} 

F = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)}

Total types = 18

E ∩ F = {(2, 6), (3, 5)}

P(E ∩ F) = `2/36 = 1/18`

P(F) = `18/36 = 1/2`

P(E|F) = `(P(E ∩ F))/(P(F))`

=`1/18 ÷ 1/2`

=`1/9`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Probability - Exercise 13.1 [पृष्ठ ५३९]

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls? Given that

  1. the youngest is a girl.
  2. at least one is a girl.

The probability that a certain kind of component will survive a check test is 0.6. Find the probability that exactly 2 of the next 4 tested components survive


A die is thrown three times. Events A and B are defined as below:
A : 5 on the first and 6 on the second throw.
B: 3 or 4 on the third throw.

Find the probability of B, given that A has already occurred.


40% students of a college reside in hostel and the remaining reside outside. At the end of the year, 50% of the hostelers got A grade while from outside students, only 30% got A grade in the examination. At the end of the year, a student of the college was chosen at random and was found to have gotten A grade. What is the probability that the selected student was a hosteler ?


Determine P(E|F).

A coin is tossed three times, where

E: head on third toss, F: heads on first two tosses


A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P ((E ∪ F)|G) and P ((E ∩ G)|G)


If P(A) = `1/2`,  P(B) = 0, then P(A|B) is ______.


A and B are two events such that P (A) ≠ 0. Find P (B|A), if A ∩ B = Φ.


If a leap year is selected at random, what is the chance that it will contain 53 Tuesdays?


A die is thrown again and again until three sixes are obtained. Find the probability of obtaining the third six in the sixth throw of the die.


A card is drawn from a well-shuffled pack of playing cards. What is the probability that it is either a spade or an ace or both? 


An urn contains 2 white and 2 black balls. A ball is drawn at random. If it is white, it is not replaced into the urn. Otherwise, it is replaced with another ball of the same colour. The process is repeated. Find the probability that the third ball is drawn is black.


Box I contains two white and three black balls. Box II contains four white and one black balls and box III contains three white ·and four black balls. A dice having three red, two yellow and one green face, is thrown to select the box. If red face turns up, we pick up the box I, if a yellow face turns up we pick up box II, otherwise, we pick up box III. Then, we draw a ball from the selected box. If the ball is drawn is white, what is the probability that the dice had turned up with a red face?


In a college, 70% of students pass in Physics, 75% pass in Mathematics and 10% of students fail in both. One student is chosen at random. What is the probability that:
(i) He passes in Physics and Mathematics?
(ii) He passes in Mathematics given that he passes in Physics.
(iii) He passes in Physics given that he passes in Mathematics.


In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in exactly one subject?


A bag contains 10 white balls and 15 black balls. Two balls are drawn in succession without replacement. What is the probability that, first is white and second is black?


Select the correct option from the given alternatives :

Bag I contains 3 red and 4 black balls while another Bag II contains 5 red and 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. The probability that it was drawn from Bag II


Can two events be mutually exclusive and independent simultaneously?


A problem in Mathematics is given to three students whose chances of solving it are `1/3, 1/4` and `1/5`. What is the probability that the problem is solved?


A problem in Mathematics is given to three students whose chances of solving it are `1/3, 1/4` and `1/5`. What is the probability that exactly one of them will solve it?


Two thirds of students in a class are boys and rest girls. It is known that the probability of a girl getting a first grade is 0.85 and that of boys is 0.70. Find the probability that a student chosen at random will get first grade marks.


A year is selected at random. What is the probability that it is a leap year which contains 53 Sundays


Choose the correct alternative:

A, B, and C try to hit a target simultaneously but independently. Their respective probabilities of hitting the target are `3/4, 1/2, 5/8`. The probability that the target is hit by A or B but not by C is


Choose the correct alternative:

If A and B are any two events, then the probability that exactly one of them occur is


In a multiple-choice question, there are three options out of which only one is correct. A person is guessing the answer at random. If there are 7 such questions, then the probability that he will get exactly 4 correct answers is ______ 


A die is thrown nine times. If getting an odd number is considered as a success, then the probability of three successes is ______


If X denotes the number of ones in five consecutive throws of a dice, then P(X = 4) is ______ 


Two dice are thrown. Find the probability that the sum of numbers appearing is more than 11, is ______.


The total number of ways in which 5 balls of different colours can be distributed among 3 persons so that each person gets at least one ball is ______ 


Three machines E1, E2, E3 in a certain factory produced 50%, 25% and 25%, respectively, of the total daily output of electric tubes. It is known that 4% of the tubes produced one each of machines E1 and E2 are defective, and that 5% of those produced on E3 are defective. If one tube is picked up at random from a day’s production, calculate the probability that it is defective.


Find the probability that in 10 throws of a fair die a score which is a multiple of 3 will be obtained in at least 8 of the throws.


Two cards are drawn out randomly from a pack of 52 cards one after the other, without replacement. The probability of first card being a king and second card not being a king is:


If two balls are drawn from a bag containing 3 white, 4 black and 5 red balls. Then, the probability that the drawn balls are of different colours is:


For a biased dice, the probability for the different faces to turn up are

Face 1 2 3 4 5 6
P 0.10 0.32 0.21 0.15 0.05 0.17

The dice is tossed and it is told that either the face 1 or face 2 has shown up, then the probability that it is face 1, is ______.


Let A, B be two events such that the probability of A is `3/10` and conditional probability of A given B is `1/2`. The probability that exactly one of the events A or B happen equals.


It is given that the events A and B are such that P(A) = `1/4, P(A/B) = 1/2` and `P(B/A) = 2/3`, then P(B) is equal to ______. 


If for two events A and B, P(A – B) = `1/5` and P(A) = `3/5`, then `P(B/A)` is equal to ______.


A Problem in Mathematics is given to the three students A, B and C. Their chances of solving the problem are `1/2, 1/3` and `1/4` respectively. Find the probability that exactly two students will solve the problem.


A Problem in Mathematics is given to the three students A, B and C. Their chances of solving the problem are `1/2, 1/3` and `1/4` respectively. Find the probability that at least two of them will solve the problem.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×