हिंदी

If a and B Are Events Such as that P(A) = `1/2`, P(B) = `1/3` And P(A ∩ B) = `1/4`, Then Find P(A / B) and P(B / A) - Mathematics

Advertisements
Advertisements

प्रश्न

If A and B are events such as that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`, then find

1) P(A / B)

2) P(B / A)

उत्तर

P(A) = 1/2      P(B) = 1/3    P(A∩B) = 1/4

`P(A "/" B) = (P(A∩B))/P(B) = (1/4)/(1/3) = 3/4`

`P(B "/" A) = (P(A ∩ B))/(P(A)) =  (1/4)/(1/2) = 1/2`

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2017-2018 (March) Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

A fair coin is tossed five times. Find the probability that it shows exactly three times head.


Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls? Given that

  1. the youngest is a girl.
  2. at least one is a girl.

If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find P(A|B)


If `P(A) = 6/11, P(B) = 5/11 "and"  P(A ∪ B) = 7/11` find

  1. P(A ∩ B)
  2. P(A|B)
  3. P(B|A)

Determine P(E|F).

A coin is tossed three times, where 

E: at least two heads, F: at most two heads


A black and a red dice are rolled. 

Find the conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4.


An urn contains 2 white and 2 black balls. A ball is drawn at random. If it is white, it is not replaced into the urn. Otherwise, it is replaced with another ball of the same colour. The process is repeated. Find the probability that the third ball is drawn is black.


 Two balls are drawn from an urn containing 3 white, 5 red and 2 black balls, one by one without replacement. What is the probability that at least one ball is red?


A bag contains 10 white balls and 15 black balls. Two balls are drawn in succession without replacement. What is the probability that, one is white and other is black?


From a pack of well-shuffled cards, two cards are drawn at random. Find the probability that both the cards are diamonds when the first card drawn is replaced in the pack


Two cards are drawn one after the other from a pack of 52 cards without replacement. What is the probability that both the cards drawn are face cards?


Select the correct option from the given alternatives :

Bag I contains 3 red and 4 black balls while another Bag II contains 5 red and 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. The probability that it was drawn from Bag II


Can two events be mutually exclusive and independent simultaneously?


Two thirds of students in a class are boys and rest girls. It is known that the probability of a girl getting a first grade is 0.85 and that of boys is 0.70. Find the probability that a student chosen at random will get first grade marks.


Suppose the chances of hitting a target by a person X is 3 times in 4 shots, by Y is 4 times in 5 shots, and by Z is 2 times in 3 shots. They fire simultaneously exactly one time. What is the probability that the target is damaged by exactly 2 hits?


Choose the correct alternative:

If A and B are any two events, then the probability that exactly one of them occur is


Choose the correct alternative:

A letter is taken at random from the letters of the word ‘ASSISTANT’ and another letter is taken at random from the letters of the word ‘STATISTICS’. The probability that the selected letters are the same is


Three machines E1, E2, E3 in a certain factory produced 50%, 25% and 25%, respectively, of the total daily output of electric tubes. It is known that 4% of the tubes produced one each of machines E1 and E2 are defective, and that 5% of those produced on E3 are defective. If one tube is picked up at random from a day’s production, calculate the probability that it is defective.


Find the probability that in 10 throws of a fair die a score which is a multiple of 3 will be obtained in at least 8 of the throws.


If P(A) = `4/5`, and P(A ∩ B) = `7/10`, then P(B|A) is equal to ______.


Two cards are drawn out randomly from a pack of 52 cards one after the other, without replacement. The probability of first card being a king and second card not being a king is:


A bag contains 3 red and 4 white balls and another bag contains 2 red and 3 white balls. If one ball is drawn from the first bag and 2 balls are drawn from the second bag, then find the probability that all three balls are of the same colour.


Let A and B be two non-null events such that A ⊂ B. Then, which of the following statements is always correct?


If A and B are two events such that P(A) = `1/3`, P(B) = `1/5` and P(A ∪ B) = `1/2`, then P(A|B') + P(B|A') is equal to ______.


Bag I contains 3 red, 4 black and 3 white balls and Bag II contains 2 red, 5 black and 2 white balls. One ball is transferred from Bag I to Bag II and then a ball is draw from Bag II. The ball so drawn is found to be black in colour. Then the probability, that the transferred ball is red, is ______.


It is given that the events A and B are such that P(A) = `1/4, P(A/B) = 1/2` and `P(B/A) = 2/3`, then P(B) is equal to ______. 


If for two events A and B, P(A – B) = `1/5` and P(A) = `3/5`, then `P(B/A)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×