मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

The Probability that a Bomb Dropped from an Aeroplane Will Strike a Target is 1 5 , If Four Bombs Are Dropped, Find the Probability that : (A) Exactly Two Will Strike the Target, - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The probability that a bomb dropped from an aeroplane will strike a target is `1/5`, If four bombs are dropped, find the probability that : 

(a) exactly two will strike the target,
(b) at least one will strike the target. 

बेरीज

उत्तर

Let x denote the random variable that 'number of bombs strike the target'.
X ∼ B(n, p)
∴ Probability mass function is given by 

P(X = x) = `""^n"C"_x  .  P^x  .  q^(n - x)`

Given ,

P = `1/5 , n = 4 ,  q = 1 - P = 4/5`

(a) P(x = 2) = `""^4"C"_2 xx (1/5)^2 xx (4/5)^2 = 96/625`

(b) P(at least 1) = P(x ≥ 1)

= `1 - P(x = 0)`

= `1 - ""^4"C"_0  p^0 q^4`

= `1 - 1 xx 1 xx (4/5)^4`

= `1 - 256/625`

= `369/625`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March)

APPEARS IN

संबंधित प्रश्‍न

From a lot of 15 bulbs which include 5 defectives, a sample of 4 bulbs is drawn one by one with replacement. Find the probability distribution of number of defective bulbs. Hence find the mean of the distribution.


A random variable X has the following probability distribution.

X 0 1 2 3 4 5 6 7
P(X) 0 k 2k 2k 3k k2

2k2

7k2 + k

Determine

(i) k

(ii) P (X < 3)

(iii) P (X > 6)

(iv) P (0 < X < 3)


Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.


If the probability that a fluorescent light has a useful life of at least 800 hours is 0.9, find the probabilities that among 20 such lights at least 2 will not have a useful life of at least 800 hours. [Given : (0⋅9)19 = 0⋅1348]

 


A random variable X ~ N (0, 1). Find P(X > 0) and P(X < 0).


There are 4 cards numbered 1 to 4, one number on one card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean and variance of X.


Find the probability distribution of the number of doublets in four throws of a pair of dice. Also find the mean and variance of this distribution.


A random variable X has the following probability distribution:

Values of X : 0 1 2 3 4 5 6 7 8
P (X) : a 3a 5a 7a 9a 11a 13a 15a 17a

Determine:
(i) The value of a
(ii) P (X < 3), P (X ≥ 3), P (0 < X < 5).


The probability distribution function of a random variable X is given by

xi : 0 1 2
pi : 3c3 4c − 10c2 5c-1

where c > 0  Find: P (X < 2) 


The probability distribution of a random variable X is given below:

x 0 1 2 3
P(X) k
\[\frac{k}{2}\]
\[\frac{k}{4}\]
\[\frac{k}{8}\]

Determine the value of k .


The probability distribution of a random variable X is given below:

x 0 1 2 3
P(X) k
\[\frac{k}{2}\]
\[\frac{k}{4}\]
\[\frac{k}{8}\]

 Find P(X ≤ 2) + P(X > 2) .

 

Find the mean and standard deviation of each of the following probability distribution :

xi : -5 -4 1 2
pi : \[\frac{1}{4}\] \[\frac{1}{8}\] \[\frac{1}{2}\] \[\frac{1}{8}\]
 

Find the mean variance and standard deviation of the following probability distribution 

xi : a b
pi : p q
where p + q = 1 .

A fair die is tossed. Let X denote 1 or 3 according as an odd or an even number appears. Find the probability distribution, mean and variance of X.


If the probability distribution of a random variable X is given by Write the value of k.

X = xi : 1 2 3 4
P (X = xi) : 2k 4k 3k k

 


A random variable has the following probability distribution:

X = xi : 0 1 2 3 4 5 6 7
P (X = xi) : 0 2 p 2 p  3 p  p2 p2 p2 2 p 

The value of p is


Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of spades. Hence, find the mean of the distribtution. 


Using the truth table verify that p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).


The following data gives the marks of 20 students in mathematics (X) and statistics (Y) each out of 10, expressed as (x, y). construct ungrouped frequency distribution considering single number as a class :
(2, 7) (3, 8) (4, 9) (2, 8) (2, 8) (5, 6) (5 , 7) (4, 9) (3, 8) (4, 8) (2, 9) (3, 8) (4, 8) (5, 6) (4, 7) (4, 7) (4, 6 ) (5, 6) (5, 7 ) (4, 6 )


A random variable X has the following probability distribution : 

X = x -2 -1 0 1 2 3
P(x) 0.1 k 0.2 2k 0.3 k

Find the value of k and calculate mean. 


If random variable X has probability distribution function.
f(x) = `c/x`, 1 < x < 3, c > 0, find c, E(x) and Var(X)


Find the premium on a property worth ₹12,50,000 at 3% if the property is fully insured. 


From the following data, find the crude death rates (C.D.R.) for Town I and Town II, and comment on the results : 

Age Group (in years) Town I Town II
Population  No. of deaths Population  No. of deaths
0-10  1500 45 6000 150
10-25  5000 30 6000 40
25 - 45  3000 15 5000 20
45 & above  500 22 3000 54

Find expected value and variance of X, where X is number obtained on uppermost face when a fair die is thrown.


Solve the following :

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

20 white rats are available for an experiment. Twelve rats are male. Scientist randomly selects 5 rats number of female rats selected on a specific day


The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X > 1


In a multiple choice test with three possible answers for each of the five questions, what is the probability of a candidate getting four or more correct answers by random choice?


State whether the following is True or False :

If r.v. X assumes the values 1, 2, 3, ……. 9 with equal probabilities, E(x) = 5.


Solve the following problem:

Following is the probability distribution of a r.v.X.

X – 3 – 2 –1 0 1 2 3
P(X = x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that X is odd.


Solve the following problem :

If a fair coin is tossed 4 times, find the probability that it shows head in the first 2 tosses and tail in last 2 tosses.


Solve the following problem :

The probability that a bomb will hit the target is 0.8. Find the probability that, out of 5 bombs, exactly 2 will miss the target.


Solve the following problem :

The probability that a lamp in the classroom will burn is 0.3. 3 lamps are fitted in the classroom. The classroom is unusable if the number of lamps burning in it is less than 2. Find the probability that the classroom cannot be used on a random occasion.


The probability distribution of a random variable X is given below:

X 0 1 2 3
P(X) k `"k"/2` `"k"/4` `"k"/8`

Determine the value of k.


The probability distribution of a random variable X is given below:

X 0 1 2 3
P(X) k `"k"/2` `"k"/4` `"k"/8`

Find P(X ≤ 2) + P (X > 2)


Two probability distributions of the discrete random variable X and Y are given below.

X 0 1 2 3
P(X) `1/5` `2/5` `1/5` `1/5`

 

Y 0 1 2 3
P(Y) `1/5` `3/10` `2/10` `1/10`

Prove that E(Y2) = 2E(X).


A random variable x has to following probability distribution.

X 0 1 2 3 4 5 6 7
P(x) 0 k 2k 2k 3k k2 2k2 7k2 + k

Determine


Two balls are drawn at random one by one with replacement from an urn containing equal number of red balls and green balls. Find the probability distribution of number of red balls. Also, find the mean of the random variable.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×