Advertisements
Advertisements
प्रश्न
If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9P(X = 3), then find the value of p.
उत्तर
\[\text{ We have } , \]
\[\text{ X follows binomial distribution with parameters n = 5, p and } P\left( X = 2 \right) = 9P\left( X = 3 \right) . \]
\[\text{ So} , P\left( X = r \right) = ^{5}{}{C}_r p^r q^\left( 5 - r \right) , \text{ where } r = 0, 1, 2, 3, 4, 5 \text{ and } q = 1 - p\]
\[\text{ As,} P\left( X = 2 \right) = 9P\left( X = 3 \right)\]
\[ \Rightarrow ^{5}{}{C}_2 p^2 q^3 = 9 ^{5}{}{C}_3 p^3 q^2 \]
\[ \Rightarrow 10 p^2 q^3 = 9 \times 10 p^3 q^2 \]
\[ \Rightarrow q = 9p\]
\[ \Rightarrow 1 - p = 9p \left[ \text{ As, } q = 1 - p \right]\]
\[ \Rightarrow 10p = 1\]
\[ \therefore p = \frac{1}{10}\]
APPEARS IN
संबंधित प्रश्न
The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 4 will hit the target.
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. What is the probability that out of 5 such bulbs
(i) none
(ii) not more than one
(iii) more than one
(iv) at least one, will fuse after 150 days of use.
In an examination, 20 questions of true-false type are asked. Suppose a student tosses a fair coin to determine his answer to each question. If the coin falls heads, he answers ‘true’; if it falls tails, he answers ‘false’. Find the probability that he answers at least 12 questions correctly.
Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?
The probability that a student is not a swimmer is 1/5 . Then the probability that out of five students, four are swimmers is
(A) `""^5C_4 (4/5)^4 1/5`
(B) `(4/5)^4 1/5
(C) `""^5C_1 1/5 (4/5)^4 `
(D) None of these
In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle is 5/6 . What is the probability that he will knock down fewer than 2 hurdles?
A fair coin is tossed 8 times. Find the probability that it shows heads exactly 5 times.
The probability of a man hitting a target is 1/4. If he fires 7 times, what is the probability of his hitting the target at least twice?
Assume that on an average one telephone number out of 15 called between 2 P.M. and 3 P.M. on week days is busy. What is the probability that if six randomly selected telephone numbers are called, at least 3 of them will be busy?
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that all the five cards are spades ?
A bag contains 7 green, 4 white and 5 red balls. If four balls are drawn one by one with replacement, what is the probability that one is red?
A bag contains 2 white, 3 red and 4 blue balls. Two balls are drawn at random from the bag. If X denotes the number of white balls among the two balls drawn, describe the probability distribution of X.
A man wins a rupee for head and loses a rupee for tail when a coin is tossed. Suppose that he tosses once and quits if he wins but tries once more if he loses on the first toss. Find the probability distribution of the number of rupees the man wins.
A card is drawn and replaced in an ordinary pack of 52 cards. How many times must a card be drawn so that (i) there is at least an even chance of drawing a heart (ii) the probability of drawing a heart is greater than 3/4?
Six coins are tossed simultaneously. Find the probability of getting
(i) 3 heads
(ii) no heads
(iii) at least one head
The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\] Find the probability that among 5 components tested at most 3 will survive .
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university all will graduate .
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\] What is the probability that he will win a prize at least twice.
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes.
A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that none of the bulbs is defective .
A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that more than 8 bulbs work properly
Find the binomial distribution when the sum of its mean and variance for 5 trials is 4.8.
Find the binomial distribution whose mean is 5 and variance \[\frac{10}{3} .\]
The probability that an item produced by a factory is defective is 0.02. A shipment of 10,000 items is sent to its warehouse. Find the expected number of defective items and the standard deviation.
A dice is thrown thrice. A success is 1 or 6 in a throw. Find the mean and variance of the number of successes.
If the mean of a binomial distribution is 20 and its standard deviation is 4, find p.
If in a binomial distribution n = 4 and P (X = 0) = \[\frac{16}{81}\] , find q.
If the mean and variance of a binomial distribution are 4 and 3, respectively, find the probability of no success.
In a box containing 100 bulbs, 10 are defective. What is the probability that out of a sample of 5 bulbs, none is defective?
A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is
A fair die is thrown twenty times. The probability that on the tenth throw the fourth six appears is
The least number of times a fair coin must be tossed so that the probability of getting at least one head is at least 0.8, is
If X follows a binomial distribution with parameters n = 100 and p = 1/3, then P (X = r) is maximum when r =
For a binomial variate X, if n = 3 and P (X = 1) = 8 P (X = 3), then p =
The probability of selecting a male or a female is same. If the probability that in an office of n persons (n − 1) males being selected is \[\frac{3}{2^{10}}\] , the value of n is
For X ~ B(n, p) and P(X = x) = `""^8"C"_x(1/2)^x (1/2)^(8 - x)`, then state value of n and p
Explain why the experiment of tossing a coin three times is said to have binomial distribution.
The mean and variance of a binomial distribution are α and `α/3` respectively. If P(X = 1) = `4/243`, then P(X = 4 or 5) is equal to ______.
An experiment succeeds thrice as often as it fails. Then in next five trials, find the probability that there will be two successes.