मराठी

Five Cards Are Drawn Successively with Replacement from a Well-shuffled Pack of 52 Cards. What is the Probability That All the Five Cards Are Spades? - Mathematics

Advertisements
Advertisements

प्रश्न

Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that all the five cards are spades ?


बेरीज

उत्तर

Let X denote the number of spade cards when 5 cards are drawn with replacement.  Because it is with replacement,

X follows a binomial distribution with n = 5; \[p = \frac{13}{52} = \frac{1}{4}; q = 1 - p = \frac{3}{4}\]

\[P(X = r) = ^{5}{}{C}_r \left( \frac{1}{4} \right)^r \left( \frac{3}{4} \right)^{5 - r} \]
\[ P(\text{ All cards are spades } ) \hspace{0.167em} = P(X = 5) \]
\[ = ^{5}{}{C}_5 \left( \frac{1}{4} \right)^5 \left( \frac{3}{4} \right)^0 \]
\[ = \frac{1}{1024}\]


 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 33: Binomial Distribution - Exercise 33.1 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 33 Binomial Distribution
Exercise 33.1 | Q 12.1 | पृष्ठ १३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A fair coin is tossed 8 times. Find the probability that it shows heads at least once


A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?


Find the probability of getting 5 exactly twice in 7 throws of a die.


The probability of a man hitting a target is 1/4. If he fires 7 times, what is the probability of his hitting the target at least twice?


Assume that on an average one telephone number out of 15 called between 2 P.M. and 3 P.M. on week days is busy. What is the probability that if six randomly selected telephone numbers are called, at least 3 of them will be busy?


A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that none is white ?


A box contains 100 tickets, each bearing one of the numbers from 1 to 100. If 5 tickets are drawn successively with replacement from the box, find the probability that all the tickets bear numbers divisible by 10.


An urn contains four white and three red balls. Find the probability distribution of the number of red balls in three draws with replacement from the urn.


Suppose that a radio tube inserted into a certain type of set has probability 0.2 of functioning more than 500 hours. If we test 4 tubes at random what is the probability that exactly three of these tubes function for more than 500 hours?


Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that at least 2 will strike the target

 

It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that none contract the disease .


The probability of a shooter hitting a target is \[\frac{3}{4} .\] How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?

 

The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?


A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that none of the bulbs is defective .

 

Find the binomial distribution when the sum of its mean and variance for 5 trials is 4.8.

 

In a binomial distribution the sum and product of the mean and the variance are \[\frac{25}{3}\] and \[\frac{50}{3}\]

 respectively. Find the distribution.

 
 

If a random variable X follows a binomial distribution with mean 3 and variance 3/2, find P (X ≤ 5).


If X follows a binomial distribution with mean 4 and variance 2, find P (X ≥ 5).

 

In a binomial distribution, if n = 20 and q = 0.75, then write its mean.

 

The mean of a binomial distribution is 10 and its standard deviation is 2; write the value of q.

 

If the mean and variance of a random variable X with a binomial distribution are 4 and 2 respectively, find P (X = 1).

 

If in a binomial distribution n = 4 and P (X = 0) = \[\frac{16}{81}\] , find q.

 
 

A fair coin is tossed 100 times. The probability of getting tails an odd number of times is


A fair die is thrown twenty times. The probability that on the tenth throw the fourth six appears is


A biased coin with probability p, 0 < p < 1, of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is 2/5, then p equals


In a binomial distribution, the probability of getting success is 1/4 and standard deviation is 3. Then, its mean is


Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that  none is a spade ?


A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that all are white ? 


Find the mean and variance of the random variable X which denotes the number of doublets in four throws of a pair of dice.


Bernoulli distribution is a particular case of binomial distribution if n = ______


Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If P(x = r)/P(x = n – r) is independent of n and r, then p equals ______.


If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9, P(X = 3), then p = ______.


The sum of n terms of the series `1 + 2(1 + 1/n) + 3(1 + 1/n)^2 + ...` is


If x4 occurs in the tth term in the expansion of `(x^4 + 1/x^3)^15`, then the value oft is equal to:


A box B1 contains 1 white ball and 3 red balls. Another box B2 contains 2 white balls and 3 red balls. If one ball is drawn at random from each of the boxes B1 and B2, then find the probability that the two balls drawn are of the same colour.


An ordinary dice is rolled for a certain number of times. If the probability of getting an odd number 2 times is equal to the probability of getting an even number 3 times, then the probability of getting an odd number for odd number of times is ______.


The mean and variance of a binomial distribution are α and `α/3` respectively. If P(X = 1) = `4/243`, then P(X = 4 or 5) is equal to ______.


If a random variable X follows the Binomial distribution B (33, p) such that 3P(X = 0) = P(X = 1), then the value of `(P(X = 15))/(P(X = 18)) - (P(X = 16))/(P(X = 17))` is equal to ______.


In three throws with a pair of dice find the chance of throwing doublets at least twice.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×