Advertisements
Advertisements
प्रश्न
A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?
उत्तर
Let X denote the number of balls marked with the digit 0 among the 4 balls drawn.
Since the balls are drawn with replacement, the trials are Bernoulli trials.
X has a binomial distribution with n = 4 and p =`1/10`
and q = 1 – p = `1 - 1/10 = 9/10`
The p.m.f. of X is given by
P(X = x) = `"^nC_x p^x q^(n-x)`
i.e. p(x) = `"^4C_x (1/10)^x (9/10)^(4-x)`, x = 0, 1, ...,4
P(None of the ball marked with digit 0) = P(X = 0)
= p(0) = `"^4C_x (1/10)^0 (9/10)^(4 - 0)`
`= 1xx1 xx (9/10)^4 = (9/10)^4`
Hence, the probability that none of the bulb marked with digit 0 is `(9/10)^4`.
APPEARS IN
संबंधित प्रश्न
A fair coin is tossed 8 times. Find the probability that it shows heads at least once
The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 4 will hit the target.
Given X ~ B (n, p)
If n = 10 and p = 0.4, find E(X) and var (X).
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.
In an examination, 20 questions of true-false type are asked. Suppose a student tosses a fair coin to determine his answer to each question. If the coin falls heads, he answers ‘true’; if it falls tails, he answers ‘false’. Find the probability that he answers at least 12 questions correctly.
On a multiple choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is 1/100. What is the probability that he will in a prize (a) at least once (b) exactly once (c) at least twice?
Find the probability of getting 5 exactly twice in 7 throws of a die.
It is known that 10% of certain articles manufactured are defective. What is the probability that in a random sample of 12 such articles, 9 are defective?
In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is
(A) 10−1
(B) `(1/2)^5`
(C) `(9/10)^5`
(D) 9/10
A couple has two children, Find the probability that both children are males, if it is known that at least one of the children is male.
Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?
The probability that a student is not a swimmer is 1/5 . Then the probability that out of five students, four are swimmers is
(A) `""^5C_4 (4/5)^4 1/5`
(B) `(4/5)^4 1/5
(C) `""^5C_1 1/5 (4/5)^4 `
(D) None of these
In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle is 5/6 . What is the probability that he will knock down fewer than 2 hurdles?
An experiment succeeds twice as often as it fails. Find the probability that in the next six trials, there will be at least 4 successes.
Assume that on an average one telephone number out of 15 called between 2 P.M. and 3 P.M. on week days is busy. What is the probability that if six randomly selected telephone numbers are called, at least 3 of them will be busy?
Eight coins are thrown simultaneously. Find the chance of obtaining at least six heads.
A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that none is white ?
In a large bulk of items, 5 percent of the items are defective. What is the probability that a sample of 10 items will include not more than one defective item?
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs none will fuse after 150 days of use
A bag contains 7 green, 4 white and 5 red balls. If four balls are drawn one by one with replacement, what is the probability that one is red?
A bag contains 2 white, 3 red and 4 blue balls. Two balls are drawn at random from the bag. If X denotes the number of white balls among the two balls drawn, describe the probability distribution of X.
Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the mean and variance of number of red cards.
A coin is tossed 5 times. If X is the number of heads observed, find the probability distribution of X.
An unbiased die is thrown twice. A success is getting a number greater than 4. Find the probability distribution of the number of successes.
Five dice are thrown simultaneously. If the occurrence of 3, 4 or 5 in a single die is considered a success, find the probability of at least 3 successes.
The items produced by a company contain 10% defective items. Show that the probability of getting 2 defective items in a sample of 8 items is
\[\frac{28 \times 9^6}{{10}^8} .\]
A card is drawn and replaced in an ordinary pack of 52 cards. How many times must a card be drawn so that (i) there is at least an even chance of drawing a heart (ii) the probability of drawing a heart is greater than 3/4?
Six coins are tossed simultaneously. Find the probability of getting
(i) 3 heads
(ii) no heads
(iii) at least one head
It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that more than 3 contract the disease .
In a hospital, there are 20 kidney dialysis machines and the chance of any one of them to be out of service during a day is 0.02. Determine the probability that exactly 3 machines will be out of service on the same day.
The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university all will graduate .
In a multiple-choice examination with three possible answers for each of the five questions out of which only one is correct, what is the probability that a candidate would get four or more correct answers just by guessing?
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\] What is the probability that he will win a prize exactly once.
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\] What is the probability that he will win a prize at least twice.
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes.
From a lot of 30 bulbs that includes 6 defective bulbs, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.
A die is thrown 5 times. Find the probability that an odd number will come up exactly three times.
A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that exactly two bulbs are defective
A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.
Determine the binomial distribution whose mean is 9 and variance 9/4.
If the mean and variance of a binomial distribution are respectively 9 and 6, find the distribution.
The probability that an item produced by a factory is defective is 0.02. A shipment of 10,000 items is sent to its warehouse. Find the expected number of defective items and the standard deviation.
The mean and variance of a binomial distribution are \[\frac{4}{3}\] and \[\frac{8}{9}\] respectively. Find P (X ≥ 1).
If in a binomial distribution mean is 5 and variance is 4, write the number of trials.
In a group of 200 items, if the probability of getting a defective item is 0.2, write the mean of the distribution.
The mean of a binomial distribution is 10 and its standard deviation is 2; write the value of q.
If for a binomial distribution P (X = 1) = P (X = 2) = α, write P (X = 4) in terms of α.
If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9P(X = 3), then find the value of p.
A rifleman is firing at a distant target and has only 10% chance of hitting it. The least number of rounds he must fire in order to have more than 50% chance of hitting it at least once is
A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is
A fair coin is tossed 100 times. The probability of getting tails an odd number of times is
Let X denote the number of times heads occur in n tosses of a fair coin. If P (X = 4), P (X= 5) and P (X = 6) are in AP, the value of n is
One hundred identical coins, each with probability p of showing heads are tossed once. If 0 < p < 1 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, the value of p is
A fair coin is tossed 99 times. If X is the number of times head appears, then P (X = r) is maximum when r is
The least number of times a fair coin must be tossed so that the probability of getting at least one head is at least 0.8, is
If the mean and variance of a binomial variate X are 2 and 1 respectively, then the probability that X takes a value greater than 1 is
A biased coin with probability p, 0 < p < 1, of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is 2/5, then p equals
If X follows a binomial distribution with parameters n = 8 and p = 1/2, then P (|X − 4| ≤ 2) equals
If X follows a binomial distribution with parameters n = 100 and p = 1/3, then P (X = r) is maximum when r =
A fair die is tossed eight times. The probability that a third six is observed in the eighth throw is
A coin is tossed 10 times. The probability of getting exactly six heads is
If the mean and variance of a binomial distribution are 4 and 3, respectively, the probability of getting exactly six successes in this distribution is
A coin is tossed 4 times. The probability that at least one head turns up is
Mark the correct alternative in the following question:
A box contains 100 pens of which 10 are defective. What is the probability that out of a sample of 5 pens drawn one by one with replacement at most one is defective?
Mark the correct alternative in the following question:
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\] is independent of n and r, then p equals
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that only 3 cards are spades ?
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that none is a spade ?
The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs at least one will fuse after 150 days of use
Determine the binomial distribution where mean is 9 and standard deviation is `3/2` Also, find the probability of obtaining at most one success.
Find the mean and variance of the random variable X which denotes the number of doublets in four throws of a pair of dice.
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If P(x = r)/P(x = n – r) is independent of n and r, then p equals ______.
If the coefficients of x7 and x8 in `(2 + x/3)^n` are equal, then n is
If in the binomial expansion of (1 + x)n where n is a natural number, the coefficients of the 5th, 6th and 7th terms are in A.P., then n is equal to:
In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is:-
If a random variable X follows the Binomial distribution B(5, p) such that P(X = 0) = P(X = 1), then `(P(X = 2))/(P(X = 3))` is equal to ______.
The probability of hitting a target in any shot is 0.2. If 5 shots are fired, find the probability that the target will be hit at least twice.
A fair coin is tossed 8 times. Find the probability that it shows heads at most once.
A fair coin is tossed 6 times. Find the probability of getting heads 4 times.
If X ∼ B(n, p), n = 6 and 9 P(X = 4) = P(X = 2), then find the value of p.
An experiment succeeds thrice as often as it fails. Then in next five trials, find the probability that there will be two successes.
The mean and variance of binomial distribution are 4 and 2 respectively. Find the probability of two successes.