मराठी

A Box Has 20 Pens of Which 2 Are Defective. Calculate the Probability that Out of 5 Pens Drawn One by One with Replacement, at Most 2 Are Defective. - Mathematics

Advertisements
Advertisements

प्रश्न

A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.

बेरीज

उत्तर

Let p denote the probability of drawing a defective pen. Then,

\[p = \frac{2}{20} = \frac{1}{10}\]
\[ \Rightarrow q = 1 - p = 1 - \frac{1}{10} = \frac{9}{10}\]

Let X denote the number of defective pens drawn. Then, X is a binomial variate with parameter n = 5 and \[p = \frac{1}{10}\]
 
Now, P(X = r) = Probability of drawing r defective pens = \[^{5}{}{C}_r \left( \frac{1}{10} \right)^r \left( \frac{9}{10} \right)^{5 - r} , r = 0, 1, 2, 3, 4, 5\]
∴ Probability of drawing at most 2 defective pens
= P(X  ≤ 2)
= P(X = 0) + P(X = 1) + P(X = 2)
\[= ^{5}{}{C}_0 \left( \frac{1}{10} \right)^0 \left( \frac{9}{10} \right)^5 +^{5}{}{C}_1 \left( \frac{1}{10} \right)^1 \left( \frac{9}{10} \right)^4 + ^{5}{}{C}_2 \left( \frac{1}{10} \right)^2 \left( \frac{9}{10} \right)^3 \]
\[ = \left( \frac{9}{10} \right)^3 \left( \frac{81}{100} + 5 \times \frac{9}{100} + \frac{10}{100} \right)\]
\[ = \frac{729}{1000} \times \frac{136}{100}\]
\[ = 0 . 99144\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 33: Binomial Distribution - Exercise 33.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 33 Binomial Distribution
Exercise 33.1 | Q 54 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The probability that a bomb will hit a target is 0.8. Find the probability that out of 10 bombs dropped, exactly 4 will hit the target.


Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What is the probability that

  1. all the five cards are spades?
  2. only 3 cards are spades?
  3. none is a spade?

The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. What is the probability that out of 5 such bulbs
(i) none
(ii) not more than one
(iii) more than one
(iv) at least one, will fuse after 150 days of use.


In an examination, 20 questions of true-false type are asked. Suppose a student tosses a fair coin to determine his answer to each question. If the coin falls heads, he answers ‘true’; if it falls tails, he answers ‘false’. Find the probability that he answers at least 12 questions correctly.


Find the probability of throwing at most 2 sixes in 6 throws of a single die.


In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle is 5/6 . What is the probability that he will knock down fewer than 2 hurdles?


A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that none is white ?


A bag contains 7 green, 4 white and 5 red balls. If four balls are drawn one by one with replacement, what is the probability that one is red?


An urn contains four white and three red balls. Find the probability distribution of the number of red balls in three draws with replacement from the urn.


An unbiased die is thrown twice. A success is getting a number greater than 4. Find the probability distribution of the number of successes.

 

A card is drawn and replaced in an ordinary pack of 52 cards. How many times must a card be drawn so that (i) there is at least an even chance of drawing a heart (ii) the probability of drawing a heart is greater than 3/4?


The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested exactly 2 will survive .

 

The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate 


In a multiple-choice examination with three possible answers for each of the five questions out of which only one is correct, what is the probability that a candidate would get four or more correct answers just by guessing?


The probability of a shooter hitting a target is \[\frac{3}{4} .\] How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99?

 

A die is thrown 5 times. Find the probability that an odd number will come up exactly three times. 


The mean of a binomial distribution is 20 and the standard deviation 4. Calculate the parameters of the binomial distribution.


If the probability of a defective bolt is 0.1, find the (i) mean and (ii) standard deviation for the distribution of bolts in a total of 400 bolts.


In eight throws of a die, 5 or 6 is considered a success. Find the mean number of successes and the standard deviation.


If a random variable X follows a binomial distribution with mean 3 and variance 3/2, find P (X ≤ 5).


If X follows a binomial distribution with mean 4 and variance 2, find P (X ≥ 5).

 

The mean and variance of a binomial distribution are \[\frac{4}{3}\] and \[\frac{8}{9}\] respectively. Find P (X ≥ 1).

 
 

A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes.     


If in a binomial distribution n = 4 and P (X = 0) = \[\frac{16}{81}\] , find q.

 
 

If the mean and variance of a binomial distribution are 4 and 3, respectively, find the probability of no success.


If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9P(X = 3), then find the value of p.  


A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is


If X is a binomial variate with parameters n and p, where 0 < p < 1 such that \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\text{ is } \] independent of n and r, then p equals 


A five-digit number is written down at random. The probability that the number is divisible by 5, and no two consecutive digits are identical, is


In a binomial distribution, the probability of getting success is 1/4 and standard deviation is 3. Then, its mean is


Mark the correct alternative in the following question:
A box contains 100 pens of which 10 are defective. What is the probability that out of a sample of 5 pens drawn one by one with replacement at most one is defective?


Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that  only 3 cards are spades ? 


A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that all are white ? 


A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that any two are white ?


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs more than one will fuse after 150 days of use 


For Bernoulli Distribution, state formula for E(X) and V(X).


The probability of hitting a target in any shot is 0.2. If 5 shots are fired, find the probability that the target will be hit at least twice.


If X ∼ B(n, p), n = 6 and 9 P(X = 4) = P(X = 2), then find the value of p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×