Advertisements
Advertisements
प्रश्न
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that only 3 cards are spades ?
उत्तर
Let X denote the number of spade cards when 5 cards are drawn with replacement. Because it is with replacement,
X follows a binomial distribution with n = 5; \[p = \frac{13}{52} = \frac{1}{4}; q = 1 - p = \frac{3}{4}\]
\[ =^{5}{}{C}_3 \left( \frac{1}{4} \right)^3 \left( \frac{3}{4} \right)^2 \]
\[ = \frac{1}{1024}\left( 90 \right) \]
\[ = \frac{45}{512}\]
APPEARS IN
संबंधित प्रश्न
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.
There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item?
On a multiple choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is 1/100. What is the probability that he will in a prize (a) at least once (b) exactly once (c) at least twice?
Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?
The probability that a student is not a swimmer is 1/5 . Then the probability that out of five students, four are swimmers is
(A) `""^5C_4 (4/5)^4 1/5`
(B) `(4/5)^4 1/5
(C) `""^5C_1 1/5 (4/5)^4 `
(D) None of these
An experiment succeeds twice as often as it fails. Find the probability that in the next six trials, there will be at least 4 successes.
A fair coin is tossed 8 times. Find the probability that it shows heads exactly 5 times.
In a large bulk of items, 5 percent of the items are defective. What is the probability that a sample of 10 items will include not more than one defective item?
An urn contains four white and three red balls. Find the probability distribution of the number of red balls in three draws with replacement from the urn.
Find the probability distribution of the number of sixes in three tosses of a die.
A man wins a rupee for head and loses a rupee for tail when a coin is tossed. Suppose that he tosses once and quits if he wins but tries once more if he loses on the first toss. Find the probability distribution of the number of rupees the man wins.
The items produced by a company contain 10% defective items. Show that the probability of getting 2 defective items in a sample of 8 items is
\[\frac{28 \times 9^6}{{10}^8} .\]
An unbiased coin is tossed 8 times. Find, by using binomial distribution, the probability of getting at least 6 heads.
It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that none contract the disease .
Suppose X has a binomial distribution with n = 6 and \[p = \frac{1}{2} .\] Show that X = 3 is the most likely outcome.
In a multiple-choice examination with three possible answers for each of the five questions out of which only one is correct, what is the probability that a candidate would get four or more correct answers just by guessing?
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\] What is the probability that he will win a prize at least twice.
A die is thrown 5 times. Find the probability that an odd number will come up exactly three times.
A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that none of the bulbs is defective .
A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.
Can the mean of a binomial distribution be less than its variance?
If the probability of a defective bolt is 0.1, find the (i) mean and (ii) standard deviation for the distribution of bolts in a total of 400 bolts.
Find the binomial distribution whose mean is 5 and variance \[\frac{10}{3} .\]
In eight throws of a die, 5 or 6 is considered a success. Find the mean number of successes and the standard deviation.
If the mean of a binomial distribution is 20 and its standard deviation is 4, find p.
The mean of a binomial distribution is 10 and its standard deviation is 2; write the value of q.
An unbiased coin is tossed 4 times. Find the mean and variance of the number of heads obtained.
A fair die is tossed eight times. The probability that a third six is observed in the eighth throw is
Fifteen coupons are numbered 1 to 15. Seven coupons are selected at random one at a time with replacement. The probability that the largest number appearing on a selected coupon is 9 is
If the mean and variance of a binomial distribution are 4 and 3, respectively, the probability of getting exactly six successes in this distribution is
A coin is tossed n times. The probability of getting at least once is greater than 0.8. Then, the least value of n, is
The probability of selecting a male or a female is same. If the probability that in an office of n persons (n − 1) males being selected is \[\frac{3}{2^{10}}\] , the value of n is
Mark the correct alternative in the following question:
The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is
If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9, P(X = 3), then p = ______.
If in the binomial expansion of (1 + x)n where n is a natural number, the coefficients of the 5th, 6th and 7th terms are in A.P., then n is equal to: