मराठी

The Items Produced by a Company Contain 10% Defective Items. Show that the Probability of Getting 2 Defective Items in a Sample of 8 Items is 28 × 9 6 10 8 . - Mathematics

Advertisements
Advertisements

प्रश्न

The items produced by a company contain 10% defective items. Show that the probability of getting 2 defective items in a sample of 8 items is

\[\frac{28 \times 9^6}{{10}^8} .\]

 

बेरीज

उत्तर

Let X denote the number of defective items in the items produced by the company.
Then, X follows binomial distribution with n = 8.

p = 10 % = \[\frac{1}{10}\] 
\[q = 1 - p = \frac{9}{10}\]
\[\text{ Hence, the distribution is given by } \]
\[P(X = r) =^{8}{}{C}_r \left( \frac{1}{10} \right)^r \left( \frac{9}{10} \right)^{8 - r} \]
\[\text{ Prob of getting 2 defective items } = P(X = 2) \]
\[ = ^{8}{}{C}_2 \left( \frac{1}{10} \right)^2 \left( \frac{9}{10} \right)^{8 - 2} \]
\[ = \frac{28 \text{ x } 9^6}{{10}^8}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 33: Binomial Distribution - Exercise 33.1 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 33 Binomial Distribution
Exercise 33.1 | Q 28 | पृष्ठ १४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.


A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0?


The probability of a man hitting a target is 1/4. If he fires 7 times, what is the probability of his hitting the target at least twice?


A bag contains 2 white, 3 red and 4 blue balls. Two balls are drawn at random from the bag. If X denotes the number of white balls among the two balls drawn, describe the probability distribution of X.


A coin is tossed 5 times. If X is the number of heads observed, find the probability distribution of X.

 

The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested at most 3 will survive .

 

Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that at least 2 will strike the target

 

A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\]  What is the probability that he will win a prize exactly once.


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\]  What is the probability that he will win a prize at least twice.


How many times must a man toss a fair coin so that the probability of having at least one head is more than 80% ?


The mean of a binomial distribution is 20 and the standard deviation 4. Calculate the parameters of the binomial distribution.


If the probability of a defective bolt is 0.1, find the (i) mean and (ii) standard deviation for the distribution of bolts in a total of 400 bolts.


A dice is thrown thrice. A success is 1 or 6 in a throw. Find the mean and variance of the number of successes.


If X follows a binomial distribution with mean 4 and variance 2, find P (X ≥ 5).

 

In a binomial distribution, if n = 20 and q = 0.75, then write its mean.

 

If the mean of a binomial distribution is 20 and its standard deviation is 4, find p.

 

If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9P(X = 3), then find the value of p.  


The least number of times a fair coin must be tossed so that the probability of getting at least one head is at least 0.8, is


A biased coin with probability p, 0 < p < 1, of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is 2/5, then p equals


If X follows a binomial distribution with parameters n = 8 and p = 1/2, then P (|X − 4| ≤ 2) equals


If the mean and variance of a binomial distribution are 4 and 3, respectively, the probability of getting exactly six successes in this distribution is


A coin is tossed 4 times. The probability that at least one head turns up is


A coin is tossed n times. The probability of getting at least once is greater than 0.8. Then, the least value of n, is


The probability of selecting a male or a female is same. If the probability that in an office of n persons (n − 1) males being selected is  \[\frac{3}{2^{10}}\] , the value of n is

 


Mark the correct alternative in the following question:
A box contains 100 pens of which 10 are defective. What is the probability that out of a sample of 5 pens drawn one by one with replacement at most one is defective?


Mark the correct alternative in the following question:

Which one is not a requirement of a binomial dstribution?


Mark the correct alternative in the following question:

The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is


A bag contains 7 red, 5 white and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that any two are white ?


For Bernoulli Distribution, state formula for E(X) and V(X).


A pair of dice is thrown four times. If getting a doublet is considered a success then find the probability of two success.


If a fair coin is tossed 10 times. Find the probability of getting at most six heads.


An ordinary dice is rolled for a certain number of times. If the probability of getting an odd number 2 times is equal to the probability of getting an even number 3 times, then the probability of getting an odd number for odd number of times is ______.


The mean and variance of a binomial distribution are α and `α/3` respectively. If P(X = 1) = `4/243`, then P(X = 4 or 5) is equal to ______.


In three throws with a pair of dice find the chance of throwing doublets at least twice.


A fair coin is tossed 6 times. Find the probability of getting heads 4 times.


If the sum of mean and variance of a binomial distribution is `25/9` for 5 trials, find p.


If X ∼ B(n, p), n = 6 and 9 P(X = 4) = P(X = 2), then find the value of p.


An experiment succeeds thrice as often as it fails. Then in next five trials, find the probability that there will be two successes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×