मराठी

The Probability that a Bulb Produced by a Factory Will Fuse After 150 Days of Use is 0.05. Find the Probability that Out of 5 Such Bulbs None Will Fuse After 150 Days of Use - Mathematics

Advertisements
Advertisements

प्रश्न

The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs none will fuse after 150 days of use 

बेरीज

उत्तर

Let be the number of bulbs that fuse after 150 days.
X follows a binomial distribution with n = 5,

\[p = 0 . 05 \text{ and }  q = 0 . 95\]

\[\text{ Or } p = \frac{1}{20}\text{ and } q = \frac{19}{20}\]

\[P(X = r) = ^{5}{}{C}_r \left( \frac{1}{20} \right)^r \left( \frac{19}{20} \right)^{5 - r} \]

\[\text{ Probability (none will fuse after 150 days of use } ) = P(X = 0) \]

\[ =^ {5}{}{C}_0 \left( \frac{1}{20} \right)^0 \left( \frac{19}{20} \right)^{5 - 0} \]

\[ = \left( \frac{19}{20} \right)^5 \]

 



shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 33: Binomial Distribution - Exercise 33.1 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 33 Binomial Distribution
Exercise 33.1 | Q 17.1 | पृष्ठ १३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.


There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item?


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is 1/100. What is the probability that he will in a prize (a) at least once (b) exactly once (c) at least twice?


A couple has two children, Find the probability that both children are males, if it is known that at least one of the children is male.


A fair coin is tossed 8 times. Find the probability that it shows heads exactly 5 times.


The items produced by a company contain 10% defective items. Show that the probability of getting 2 defective items in a sample of 8 items is

\[\frac{28 \times 9^6}{{10}^8} .\]

 


The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested exactly 2 will survive .

 

The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested at most 3 will survive .

 

It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that more than 3 contract the disease .

 

In a multiple-choice examination with three possible answers for each of the five questions out of which only one is correct, what is the probability that a candidate would get four or more correct answers just by guessing?


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is `1/100`. What is the probability that he will win a prize at least once. 


A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that  more than 8 bulbs work properly                                                                                                                            

 

 


Determine the binomial distribution whose mean is 9 and variance 9/4.

 

If a random variable X follows a binomial distribution with mean 3 and variance 3/2, find P (X ≤ 5).


If X follows a binomial distribution with mean 4 and variance 2, find P (X ≥ 5).

 

If the sum of the mean and variance of a binomial distribution for 6 trials is \[\frac{10}{3},\]  find the distribution.

 
 

A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.    


If in a binomial distribution mean is 5 and variance is 4, write the number of trials.

 

The mean of a binomial distribution is 10 and its standard deviation is 2; write the value of q.

 

If for a binomial distribution P (X = 1) = P (X = 2) = α, write P (X = 4) in terms of α.

 

A fair coin is tossed 100 times. The probability of getting tails an odd number of times is


A fair die is thrown twenty times. The probability that on the tenth throw the fourth six appears is


A biased coin with probability p, 0 < p < 1, of heads is tossed until a head appears for the first time. If the probability that the number of tosses required is even is 2/5, then p equals


A coin is tossed 10 times. The probability of getting exactly six heads is


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs at least one will fuse after 150 days of use 


In a multiple-choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?

One of the condition of Bernoulli trials is that the trials are independent of each other.


If X follows binomial distribution with parameters n = 5, p and P(X = 2) = 9, P(X = 3), then p = ______.


If x4 occurs in the tth term in the expansion of `(x^4 + 1/x^3)^15`, then the value oft is equal to:


In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is:-


The probability of hitting a target in any shot is 0.2. If 5 shots are fired, find the probability that the target will be hit at least twice.


In three throws with a pair of dice find the chance of throwing doublets at least twice.


A fair coin is tossed 8 times. Find the probability that it shows heads at most once.


The mean and variance of binomial distribution are 4 and 2 respectively. Find the probability of two successes.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×