मराठी

A Factory Produces Bulbs. the Probability that One Bulb is Defective is 1 50 and They Are Packed in Boxes of 10. from a Single Box, Find the Probability that Exactly Two Bulbs Are Defective - Mathematics

Advertisements
Advertisements

प्रश्न

A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that exactly two bulbs are defective

बेरीज

उत्तर

Let getting a defective bulb from a single box is a success.
We have

\[p = \text{ probability of getting a defective bulb}  = \frac{1}{50}\]
\[\text{ Also,}  q = 1 - p = 1 - \frac{1}{50} = \frac{49}{50}\]
\[\text{ Let X denote the number of success in a sample of 10 trials . Then, } \]
\[\text{ X follows binomial distribution with parameters n = 10 and p }  = \frac{1}{50}\]
\[ \therefore P\left( X = r \right) = ^{10}{}{C}_r p^r q^\left( 10 - r \right) = ^{10}{}{C}_r \left( \frac{1}{50} \right)^r \left( \frac{49}{50} \right)^\left( 10 - r \right) = \frac{^{10}{}{C}_r {49}^\left( 10 - r \right)}{{50}^{10}}, \text{ where } r = 0, 1, 2, 3, . . . , 10\]
\[\text{ Now} , \]

\[ \text{ Required probability } = P\left( \text{ exactly two bulbs are defective } \right)\]
\[ = P\left( X = 2 \right)\]
\[ = \frac{^{10}{}{C}_2 {49}^8}{{50}^{10}}\]
\[ = \frac{45 \times {49}^8}{{50}^{10}}\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 33: Binomial Distribution - Exercise 33.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 33 Binomial Distribution
Exercise 33.1 | Q 53.2 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Given X ~ B (n, p)
If n = 10 and p = 0.4, find E(X) and var (X).


There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item?


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. What is the probability that out of 5 such bulbs
(i) none
(ii) not more than one
(iii) more than one
(iv) at least one, will fuse after 150 days of use.


Find the probability of getting 5 exactly twice in 7 throws of a die.


Find the probability of throwing at most 2 sixes in 6 throws of a single die.


A box contains 100 tickets, each bearing one of the numbers from 1 to 100. If 5 tickets are drawn successively with replacement from the box, find the probability that all the tickets bear numbers divisible by 10.


A bag contains 7 green, 4 white and 5 red balls. If four balls are drawn one by one with replacement, what is the probability that one is red?


An unbiased die is thrown twice. A success is getting a number greater than 4. Find the probability distribution of the number of successes.

 

The items produced by a company contain 10% defective items. Show that the probability of getting 2 defective items in a sample of 8 items is

\[\frac{28 \times 9^6}{{10}^8} .\]

 


An unbiased coin is tossed 8 times. Find, by using binomial distribution, the probability of getting at least 6 heads.

 

The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested at most 3 will survive .

 

The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate 


How many times must a man toss a fair coin so that the probability of having at least one head is more than 80% ?


From a lot of 30 bulbs that includes 6 defective bulbs, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.


The probability of a man hitting a target is 0.25. He shoots 7 times. What is the probability of his hitting at least twice?


Determine the binomial distribution whose mean is 20 and variance 16.

 

Find the binomial distribution whose mean is 5 and variance \[\frac{10}{3} .\]

 

The probability that an item produced by a factory is defective is 0.02. A shipment of 10,000 items is sent to its warehouse. Find the expected number of defective items and the standard deviation.


If a random variable X follows a binomial distribution with mean 3 and variance 3/2, find P (X ≤ 5).


If X follows a binomial distribution with mean 4 and variance 2, find P (X ≥ 5).

 

If in a binomial distribution mean is 5 and variance is 4, write the number of trials.

 

In a group of 200 items, if the probability of getting a defective item is 0.2, write the mean of the distribution.


The mean of a binomial distribution is 10 and its standard deviation is 2; write the value of q.

 

A fair coin is tossed a fixed number of times. If the probability of getting seven heads is equal to that of getting nine heads, the probability of getting two heads is


Let X denote the number of times heads occur in n tosses of a fair coin. If P (X = 4), P (X= 5) and P (X = 6) are in AP, the value of n is 


If X follows a binomial distribution with parameters n = 8 and p = 1/2, then P (|X − 4| ≤ 2) equals


A five-digit number is written down at random. The probability that the number is divisible by 5, and no two consecutive digits are identical, is


In a binomial distribution, the probability of getting success is 1/4 and standard deviation is 3. Then, its mean is


Mark the correct alternative in the following question:

The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is


Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that  only 3 cards are spades ? 


The mean, median and mode for binomial distribution will be equal when


If in the binomial expansion of (1 + x)n where n is a natural number, the coefficients of the 5th, 6th and 7th terms are in A.P., then n is equal to:


A box B1 contains 1 white ball and 3 red balls. Another box B2 contains 2 white balls and 3 red balls. If one ball is drawn at random from each of the boxes B1 and B2, then find the probability that the two balls drawn are of the same colour.


The probability of hitting a target in any shot is 0.2. If 5 shots are fired, find the probability that the target will be hit at least twice.


In three throws with a pair of dice find the chance of throwing doublets at least twice.


If X ∼ B(n, p), n = 6 and 9 P(X = 4) = P(X = 2), then find the value of p.


For the binomial distribution X ∼ B(n, p), n = 6 and P(X = 4) = P(X = 2). find p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×