Advertisements
Advertisements
प्रश्न
Eight coins are thrown simultaneously. Find the chance of obtaining at least six heads.
उत्तर
Let X be the number of heads in tossing 8 coins.
X follows a binomial distribution with n =8;
\[\text{ Probability of obtaining at least 6 heads} = P(X \geq 6) \]
\[ = P(X = 6) + P(X = 7) + P(X = 8)\]
\[ =^{8}{}{C}_6 \left( \frac{1}{2} \right)^8 + ^{8}{}{C}_7 \left( \frac{1}{2} \right)^8 + ^{8}{}{C}_8 \left( \frac{1}{2} \right)^8 \]
\[ = \frac{1}{2^8}\left( 28 + 8 + 1 \right) \]
\[ = \frac{37}{256}\]
APPEARS IN
संबंधित प्रश्न
A fair coin is tossed 8 times. Find the probability that it shows heads at least once
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.
There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item?
On a multiple choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is 1/100. What is the probability that he will in a prize (a) at least once (b) exactly once (c) at least twice?
Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?
The probability that a student is not a swimmer is 1/5 . Then the probability that out of five students, four are swimmers is
(A) `""^5C_4 (4/5)^4 1/5`
(B) `(4/5)^4 1/5
(C) `""^5C_1 1/5 (4/5)^4 `
(D) None of these
An experiment succeeds twice as often as it fails. Find the probability that in the next six trials, there will be at least 4 successes.
A bag contains 2 white, 3 red and 4 blue balls. Two balls are drawn at random from the bag. If X denotes the number of white balls among the two balls drawn, describe the probability distribution of X.
A coin is tossed 5 times. If X is the number of heads observed, find the probability distribution of X.
An unbiased coin is tossed 8 times. Find, by using binomial distribution, the probability of getting at least 6 heads.
Assume that the probability that a bomb dropped from an aeroplane will strike a certain target is 0.2. If 6 bombs are dropped, find the probability that exactly 2 will strike the target .
An experiment succeeds twice as often as it fails. Find the probability that in the next 6 trials there will be at least 4 successes.
In a hospital, there are 20 kidney dialysis machines and the chance of any one of them to be out of service during a day is 0.02. Determine the probability that exactly 3 machines will be out of service on the same day.
A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\] What is the probability that he will win a prize at least twice.
How many times must a man toss a fair coin so that the probability of having at least one head is more than 90% ?
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes.
Find the probability that in 10 throws of a fair die, a score which is a multiple of 3 will be obtained in at least 8 of the throws.
A factory produces bulbs. The probability that one bulb is defective is \[\frac{1}{50}\] and they are packed in boxes of 10. From a single box, find the probability that more than 8 bulbs work properly
A die is thrown three times. Let X be 'the number of twos seen'. Find the expectation of X.
In a binomial distribution, if n = 20 and q = 0.75, then write its mean.
If the mean and variance of a binomial variate X are 2 and 1 respectively, find P (X > 1).
If in a binomial distribution n = 4, P (X = 0) = \[\frac{16}{81}\], then P (X = 4) equals
If X is a binomial variate with parameters n and p, where 0 < p < 1 such that \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\text{ is } \] independent of n and r, then p equals
Let X denote the number of times heads occur in n tosses of a fair coin. If P (X = 4), P (X= 5) and P (X = 6) are in AP, the value of n is
The least number of times a fair coin must be tossed so that the probability of getting at least one head is at least 0.8, is
Fifteen coupons are numbered 1 to 15. Seven coupons are selected at random one at a time with replacement. The probability that the largest number appearing on a selected coupon is 9 is
A coin is tossed 10 times. The probability of getting exactly six heads is
In a binomial distribution, the probability of getting success is 1/4 and standard deviation is 3. Then, its mean is
A coin is tossed 4 times. The probability that at least one head turns up is
A coin is tossed n times. The probability of getting at least once is greater than 0.8. Then, the least value of n, is
Mark the correct alternative in the following question:
The probability of guessing correctly at least 8 out of 10 answers of a true false type examination is
Five cards are drawn successively with replacement from a well-shuffled pack of 52 cards. What is the probability that only 3 cards are spades ?
In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is:-
If a random variable X follows the Binomial distribution B (33, p) such that 3P(X = 0) = P(X = 1), then the value of `(P(X = 15))/(P(X = 18)) - (P(X = 16))/(P(X = 17))` is equal to ______.
An experiment succeeds thrice as often as it fails. Then in next five trials, find the probability that there will be two successes.
The mean and variance of binomial distribution are 4 and 2 respectively. Find the probability of two successes.