मराठी

How Many Times Must a Man Toss a Fair Coin So that the Probability of Having at Least One Head is More than 90% ? - Mathematics

Advertisements
Advertisements

प्रश्न

How many times must a man toss a fair coin so that the probability of having at least one head is more than 90% ?

बेरीज

उत्तर

Suppose the man tosses a fair coin n times and X denotes the number of heads in n tosses.

\[\text{ As p } = \frac{1}{2} \text{ and q } = \frac{1}{2}, \]
\[ P(X = r) = ^{n}{}{C}_r \left( \frac{1}{2} \right)^r \left( \frac{1}{2} \right)^{n - r} , r = 0, 1, 2, 3 . . . . n\]
\[\text{ It is given that } P\left( X \geq 1 \right) > 0 . 9\]
\[ \Rightarrow 1 - P\left( X = 0 \right) > 0 . 9\]
\[ \Rightarrow 1 - ^{n}{}{C}_0 \left( \frac{1}{2} \right)^n > 0 . 9\]
\[ \Rightarrow \left( \frac{1}{2} \right)^n < \frac{1}{10}\]
\[ \Rightarrow 2^n > 10\]
\[ \Rightarrow n = 4, 5, 6 . . . . \]
\[\text{ Hence, the man must toss the coin at least 4 times } . \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 33: Binomial Distribution - Exercise 33.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 33 Binomial Distribution
Exercise 33.1 | Q 46 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A fair coin is tossed 8 times. Find the probability that it shows heads at least once


The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. What is the probability that out of 5 such bulbs
(i) none
(ii) not more than one
(iii) more than one
(iv) at least one, will fuse after 150 days of use.


A couple has two children, Find the probability that both children are females, if it is known that the elder child is a female.


Suppose that 90% of people are right-handed. What is the probability that at most 6 of a random sample of 10 people are right-handed?



Five cards are drawn one by one, with replacement, from a well-shuffled deck of 52 cards. Find the probability that
(i) all the five cards diamonds
(ii) only 3 cards are diamonds
(iii) none is a diamond


The probability of a man hitting a target is 1/4. If he fires 7 times, what is the probability of his hitting the target at least twice?


Assume that on an average one telephone number out of 15 called between 2 P.M. and 3 P.M. on week days is busy. What is the probability that if six randomly selected telephone numbers are called, at least 3 of them will be busy?


The mathematics department has 8 graduate assistants who are assigned to the same office. Each assistant is just as likely to study at home as in office. How many desks must there be in the office so that each assistant has a desk at least 90% of the time?


An unbiased coin is tossed 8 times. Find, by using binomial distribution, the probability of getting at least 6 heads.

 

Six coins are tossed simultaneously. Find the probability of getting
(i) 3 heads
(ii) no heads
(iii) at least one head


The probability that a certain kind of component will survive a given shock test is \[\frac{3}{4} .\]  Find the probability that among 5 components tested at most 3 will survive .

 

It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are inoculated, find the probability that none contract the disease .


An experiment succeeds twice as often as it fails. Find the probability that in the next 6 trials there will be at least 4 successes.

 

The probability that a student entering a university will graduate is 0.4. Find the probability that out of 3 students of the university none will graduate 


Ten eggs are drawn successively, with replacement, from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg.


In a multiple-choice examination with three possible answers for each of the five questions out of which only one is correct, what is the probability that a candidate would get four or more correct answers just by guessing?


A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is \[\frac{1}{100} .\]  What is the probability that he will win a prize exactly once.


How many times must a man toss a fair coin so that the probability of having at least one head is more than 80% ?


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes.


Find the probability that in 10 throws of a fair die, a score which is a multiple of 3 will be obtained in at least 8 of the throws. 


The mean of a binomial distribution is 20 and the standard deviation 4. Calculate the parameters of the binomial distribution.


If X follows a binomial distribution with mean 4 and variance 2, find P (X ≥ 5).

 

A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes.     


The mean of a binomial distribution is 10 and its standard deviation is 2; write the value of q.

 

If for a binomial distribution P (X = 1) = P (X = 2) = α, write P (X = 4) in terms of α.

 

If in a binomial distribution n = 4, P (X = 0) = \[\frac{16}{81}\], then P (X = 4) equals

 


A fair coin is tossed 99 times. If X is the number of times head appears, then P (X = r) is maximum when r is


If the mean and variance of a binomial variate X are 2 and 1 respectively, then the probability that X takes a value greater than 1 is


One of the condition of Bernoulli trials is that the trials are independent of each other.


The mean, median and mode for binomial distribution will be equal when


If x4 occurs in the tth term in the expansion of `(x^4 + 1/x^3)^15`, then the value oft is equal to:


If the coefficients of x7 and x8 in `(2 + x/3)^n` are equal, then n is


A box B1 contains 1 white ball and 3 red balls. Another box B2 contains 2 white balls and 3 red balls. If one ball is drawn at random from each of the boxes B1 and B2, then find the probability that the two balls drawn are of the same colour.


The mean and variance of binomial distribution are 4 and 2 respectively. Find the probability of two successes.


For the binomial distribution X ∼ B(n, p), n = 6 and P(X = 4) = P(X = 2). find p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×